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ABSTRACT

Previously proposed approaches to ad-hoc entity retrieval
in the Web of Data (ERWD) used multi-fielded representa-
tion of entities and relied on standard unigram bag-of-words
retrieval models. Although retrieval models incorporating
term dependencies have been shown to be significantly more
effective than the unigram bag-of-words ones for ad hoc doc-
ument retrieval, it is not known whether accounting for term
dependencies can improve retrieval from the Web of Data.
In this work, we propose a novel retrieval model that in-
corporates term dependencies into structured document re-
trieval and apply it to the task of ERWD. In the proposed
model, the document field weights and the relative impor-
tance of unigrams and bigrams are optimized with respect to
the target retrieval metric using a learning-to-rank method.
Experiments on a publicly available benchmark indicate sig-
nificant improvement of the accuracy of retrieval results by
the proposed model over state-of-the-art retrieval models for
ERWD.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval
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1. INTRODUCTION
The past decade has witnessed the emergence of numer-
ous large-scale publicly available knowledge bases, such as
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Freebase1, DBpedia2, Wikidata3 and YAGO4. Open source
knowledge bases typically adopt Resource Description Frame-
work (RDF) data model and are published as part of the
Linked Open Data (LOD)5 cloud commonly referred to as
the Web of Data. A similar trend exists in the industry
as well (e.g. Google’s Knowledge Graph, Facebook’s Open
Graph and Microsoft’s Satori). Individual RDF datasets in
the Web of Data can be considered as massive graphs, in
which the nodes are the entities (resources) and the edges
are semantic relations between the entities. Each resource
describes an object in the Web of Data, which can either be
a real entity (e.g. Albert Einstein or Apple, Inc.) or an ab-
stract concept (special relativity). The relations between the
entities are represented as subject-predicate-object triples
(e.g. <Albert Einstein, knownFor, special relativity>).

Graph structured knowledge in general and RDF graphs
in particular are well-suited for addressing the information
needs that aim at finding specific entities, for which the
top results returned by the search systems should consist of
structured objects rather than individual documents. The
analysis of Web search engine logs reported in [26] revealed
that such information needs constitute more than half of
search engine queries. They also proposed to classify entity-
oriented queries into five classes, each of which requires dif-
ferent treatment by the search systems. The demand for
efficient access to knowledge graphs gives rise to the task
of Ad-hoc Entity Retrieval from the Web of Data (ERWD).
As opposed to the traditional information retrieval task, in
which search systems return documents in response to key-
word queries, the goal of ERWD is to return an entity or a
list of entities based on their unconstrained (and often fairly
long) keyword descriptions. This task is focused on retrieval
from knowledge bases, as opposed to utilization of knowledge
bases in retrieval [7, 15]. Although entities have been studied
in textual data mining (e.g. [16]), ERWD is a fairly recent
trend in IR. It is related to entity retrieval in the context of
expert finding, for which different unigram language model
based approaches have been proposed (e.g. [1]). ERWD,

1http://freebase.com
2http://dbpedia.org
3http://wikidata.org
4http://www.mpi-inf.mpg.de/yago-naga/yago/
5http://lod-cloud.net/



however, provides its own unique set of challenges, such as
designing effective entity representation methods and novel
retrieval models.
While several methods [4, 21, 24] to address the first chal-

lenge have been previously proposed, only standard bag-of-
words retrieval models, such as BM25 [2, 31] and language
modeling (LM) based ones [8, 9, 22], as well as their multi-
fielded extensions [4, 5, 20, 21, 24] have been applied to the
task of entity retrieval from the Web of Data. It is known,
however, that retrieval models incorporating term dependen-
cies (in the form of ordered and unordered n-grams) are sub-
stantially more accurate than standard bag-of-words mod-
els in case of ad-hoc document retrieval [12], particularly for
longer, verbose queries [3]. Markov Random Field (MRF)
retrieval model [18, 19] provided a theoretical foundation
to account for bigrams, as well as ordered and unordered
phrases in IR, by representing a query as a graph of depen-
dencies between the query terms. MRF calculates the score
of each document with respect to a query as a linear combina-
tion of potential functions, each of which is computed based
on a document and a clique in the query graph. Sequen-
tial Dependence Model (SDM) is a variant of the Markov
Random Field model that assumes sequential dependence
for the query terms and uses three potential functions: one
that is based on unigrams and the other two that are based
on bigrams, either as ordered sequences of terms or as terms
co-occurring within a window of the pre-defined size.
To address the second challenge, the problem of design-

ing effective retrieval models for ERWD, we propose Fielded
Sequential Dependence Model (FSDM), which unifies and
generalizes sequential dependence [18] and the mixture of
language models (MLM) [23] retrieval models and allows to
account for term dependencies in structured document re-
trieval. Although, in this work, we only experimented with
entity retrieval from the knowledge graphs, our proposed
model can be utilized for retrieval from collections of any
structured documents.
The key contributions of this work are two-fold:

1. novel retrieval model for collections of structured doc-
uments and the algorithm to learn its parameters with
respect to the target retrieval metric. Retrieval per-
formance of the proposed model has been comprehen-
sively evaluated with respect to the state-of-the-art
baselines for ERWD using a publicly available bench-
mark covering different types of information needs;

2. novel multi-fielded entity representation scheme for ERWD
that better captures the semantics of both the entities
and relations between them.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a brief overview of previous related work.
In Section 3, we present FSDM, an algorithm to optimize
its parameters, and a method to construct multi-fielded en-
tity representations. Experimental results are reported in
Section 4 and Section 5 concludes the paper.

2. RELATED WORK
The retrieval model proposed in this paper builds upon the
previous work along the following research directions.
Entity retrieval. The task of ERWD as answering arbi-
trary information needs expressed as keyword queries that
aim at finding nodes or aspects of nodes in RDF graphs was

first introduced by Pound et al. [26]. They also proposed
to classify such queries into five categories: entity queries,
type queries (i.e. list search queries or telegraphic queries),
attribute queries, relation queries, and other queries. Al-
though multiple open entity retrieval evaluation campaigns
providing test collections and query sets covering a variety of
information needs and relevance judgments have been con-
ducted [10], most of the previous work along this direction
focused on one particular query type. For example, the Sem-
Search Entity Search challenge6 focused on finding one par-
ticular entity described by a keyword query. Previous suc-
cessful retrieval approaches for queries of this type involved
construction of multi-fielded entity representations by group-
ing entity attributes together by type [24], into title and con-
tent [21], according to manually determined importance [4]
or into a two-level hierarchy [20]. Several methods adopted
a two-stage approach, in which the initial retrieval results
obtained using standard bag-of-words retrieval models were
first expanded using relations in the knowledge graph and
then the expanded results were re-ranked based on entity
similarity. Tonon et al. [31] used Jaro-Winkler similarity
between the entity names, while Herzig et al. [11] used
Jenson-Shannon divergence between the language models of
entities. Zhiltsov and Agichtein [33] proposed a learning-
to-rank based approach, which combines explicit entity in-
formation with semantic similarity between the entities in
latent space determined using a modified algorithm for ten-
sor factorization.
The INEX 2009 Entity Ranking (INEX-XER)7 track intro-

duced an entity list completion task and provided an evalua-
tion platform for type queries. The TREC 2009 Entity track
focused on two related retrieval tasks “related entity find-
ing” (i.e. finding all entities related to a given entity query)
and “entity list completion” (i.e. finding entities with com-
mon properties given some examples). The List Search track
from the SemSearch challenge targets a group of entities that
match a keyword query. Bron et al. [5] proposed a hybrid
approach that linearly combines the scores of the mixture
of language models and a structure-based method, which
captures the statistics of predicate-object pairs in triples
shared by entity candidates. Elbassouni et al. [9] focused
on the case of structured queries consisting of RDF triples
and proposed a method that constructs LMs (as multino-
mial distributions over RDF triples) for both the queries
and each possible result sub-graph. The ranking is based on
the Kullback-Leibler divergence between the query LM and
the LMs of each result sub-graph. The SemSets model [6]
utilizes the relevance of entities to automatically constructed
categories (semantic sets, SemSets) measured according to
structural and textual similarity. Their approach combines
a retrieval model with the methods for spreading activation
over the link structure of a knowledge graph and evaluation
of membership in semantic sets.
Question Answering over Linked Data (QALD)8 evalua-

tion campaigns aim at developing retrieval methods to an-
swer sophisticated question-like queries. The majority of
queries are natural language questions that are focused on
finding one particular entity (or several entities) as exact an-
swers to these questions. A method based on integer linear

6http://km.aifb.kit.edu/ws/semsearch\{10|11\}
7http://www.l3s.de/~demartini/XER09/
8http://www.sc.cit-ec.uni-bielefeld.de/qald/



programming for joint segmentation and disambiguation of
question-like queries was proposed in [32]. Shekarpour et
al. [29] applied the Hidden Markov Model to map question
terms into entities and relations in the knowledge graph and
translated keyword queries into structured SPARQL queries.
For comprehensive overview of approaches to entity retrieval,
we refer an interested reader to the recent surveys [17] [27].
Multi-fielded retrieval models. Multi-fielded extensions
of different bag-of-words retrieval models have been pro-
posed for structured document retrieval. BM25F [28] al-
lows to either combine the BM25 retrieval scores of indi-
vidual document fields with different weights into the final
document retrieval score or calculate the aggregated basic
retrieval statistics, such as TF and field lengths across mul-
tiple fields and use them in the original retrieval formula.
Mixture of Language Models (MLM) [23] is a multi-fielded
extension of the query likelihood retrieval model [25], a stan-
dard language modeling based retrieval model. In MLM, the
retrieval score of a structured document is a linear combina-
tion of probabilities of query terms in the language models
calculated for each document field. Although individual field
weights in BM25F and MLM can be tuned for a particular
collection, they are fixed across different query terms. To
overcome this limitation, Probabilistic Retrieval Model for
Semistructured Data (PRMS) [14] maps each query term
into document fields using probabilistic classification based
on collection statistics. Although PRMS was originally pro-
posed for XML retrieval, it was later applied to ERWD [2].
Field Relevance Model (FRM) [13] is an extension of PRMS
to the case of relevance feedback.
Incorporating term dependencies into retrieval mod-
els. Metzler and Croft proposed the MRF retrieval model,
which based on the assumption about the dependencies be-
tween the query terms, has three variants: full independence
(FI), sequential dependence (SD) and full dependence (FD)
models. Bendersky et al. [3] extended SDM to allow learning
optimal weights for unigrams and bigrams as a linear combi-
nation of features that are based on internal and external col-
lection statistics. Huston and Croft [12] systematically eval-
uated a large number of bigram dependence models across
short and long queries and concluded that retrieval mod-
els incorporating term dependencies consistently improve
retrieval accuracy over the standard bag-of-words retrieval
models. They also experimentally demonstrated that the
performance of term dependence models can be significantly
improved through parameter tuning.

3. APPROACH
In this section, we introduce the Fielded Sequential Depen-
dence Model (FSDM), a novel model for structured docu-
ment retrieval, and describe our strategy for building multi-
fielded entity description documents.

3.1 FSDM
One of the limitations of standard SDM for structured doc-
ument retrieval is that it considers term matches in different
parts of a document as equally important (i.e. having the
same contribution to the final retrieval score of a document),
thus disregarding the document structure. For example, in
case of unigrams, the potential function looks as follows:

fT (qi, D) = logP (qi|θD) = log
tfqi,D + µ

cfqi
|C|

|D|+ µ

where qi is a query term, D is a document, tfqi,D is the fre-
quency of qi inD, |D| is the document length, µ is a Dirichlet
prior, that is usually set to the average document length in
the collection, cfqi is the collection frequency of qi and |C|
is the total number of terms in the collection. To adapt the
MRF framework to multi-fielded entity descriptions, we pro-
pose to replace a single document language model P (qi|θD)
with a mixture of language models (MLM) for each docu-
ment field. Hence, our model is an extension of sequential
dependence model, although the same transformation can
be applied to the full dependence model.
Consequently, the potential function for unigrams in case

of FSDM is:

f̃T (qi, D) = log
∑

j

w
T
j P (qi|θ

j
D) = log

∑

j

w
T
j

tfqi,Dj + µj

cfj
qi

|Cj |

|Dj |+ µj

where j = 1, F , F is the number of fields, θjD is a language
model of field j smoothed using its own Dirichlet prior µj

and wj are the field weights with the following constraints:∑
j
wj = 1, wj > 0; tfqi,Dj is the term frequency of qi in

field j of document D; cf j
qi

is the collection frequency of qi
in field j; |Cj | is the total number of terms in field j across
all the documents in the collection and |Dj | is the length of
field j in D.
The potential functions for ordered and unordered bigrams

qi,i+1 = (qi, qi+1) in the query are defined as follows:

f̃O(qi,i+1, D) = log
∑

j

w
O
j

tf#1(qi,i+1),Dj + µj

cf
j

#1(qi,i+1)

|Cj |

|Dj |+ µj

f̃U (qi,i+1, D) = log
∑

j

w
U
j

tf#uw8(qi,i+1),Dj + µj

cf
j

#uw8(qi,i+1)

|Cj |

|Dj |+ µj

where tf#1(qi,i+1),Dj is the frequency of exact phrase qiqi+1

in field j of document D, cf j

#1(qi,i+1)
is the collection fre-

quency of exact phrase qiqi+1 in field j, tf#uw8(qi,i+1),Dj is
the number of times terms qi and qi+1 occur together within
a window of 8 word positions in field j of document D, re-
gardless of the order of these terms.
Having separate mixtures of language models with differ-

ent weights for unigrams as well as ordered and unordered bi-
grams gives FSDM the flexibility to adjust the multi-fielded
document scoring strategy for matching query terms and
phrases depending on the query type (entity, type, relation,
etc.). Intuitively, an FSDM field weighting scheme, in which
unordered bigram matches in the descriptive fields of en-
tity documents are given higher weight than the matches
in the name field, should be more effective for informational
queries, while giving higher weight to ordered bigrammatches
in the name field can be beneficial for navigational queries.
For example, precision of retrieval results for an informa-
tional query SemSearch LS-1 “apollo astronauts who walked
on the moon” is likely to increase when more importance is
given to the matches of unordered bigrams apollo astronauts
and walked moon within a window inside the descriptive
fields of entity documents, rather than the name field, while
giving higher weights to the matches of the same unordered
bigrams in the name field is likely to have the opposite effect.
Substituting the potential functions ψ(qi, D; Λ) and

ψ(qi, qi+1,D; Λ) in the formula for the joint distribution over



the document and query terms in the MRF model completes
the transformation of SDM into FSDM:

PG,Λ(Q,D) =
1

ZΛ

∏

c∈Cliques(G)

ψ(c;λc)

=
1

ZΛ
× exp[λT f̃T (qi, D)]×

exp[λO f̃O(qi, qi+1, D) + λU f̃U (qi, qi+1, D)]

Note that for the purpose of ranking, it is sufficient to
compute the following posterior probability:

PΛ(D|Q) =
PG,Λ(Q,D)

PΛ(Q)

Consequently, FSDM is a term dependence retrieval model
with the following ranking function:

PΛ(D|Q)
rank
= λT

∑

q∈Q

f̃T (qi, D) +

λO

∑

q∈Q

f̃O(qi, qi+1, D) +

λU

∑

q∈Q

f̃U (qi, qi+1, D) (1)

It is easy to see from Equation 1 that MLM is a special
case of FSDM, when λT = 1, λO = 0, λU = 0.

3.2 Parameter Estimation
Overall, FSDM has 3∗F +3 free parameters: 〈wT ,wO,wU ,
λ〉. Before introducing the parameter estimation procedure,
we would like to emphasize two properties of the ranking
function of FSDM. The first property is linearity with re-
spect to λ. We therefore can apply any linear learning-to-
rank algorithm to optimize the ranking function with respect
to λ. The second property is linearity with respect to w of
the arguments of monotonic f̃(·) functions. Therefore, opti-
mization of the arguments as linear functions with respect
to w, leads to optimization of each function f̃(·).
Based on the above properties, we propose a two-stage

Algorithm 1 to optimize the free parameters of FSDM with
respect to the target retrieval metric, which in our case is
Mean Average Precision (MAP).

Algorithm 1 An algorithm for training FSDM parameters.

1: Q← Train queries
2: for s ∈ {T,O, U} do
3: λ = es

4: ŵ
s ← CA(Q,λ)

5: end for
6: λ̂← CA(Q, ŵT , ŵO, ŵU )

In the first stage (lines 2-5), the algorithm independently
estimates the optimal values of MLM parameters for uni-
grams, ordered and unordered bigrams. The unit vectors
eT = (1, 0, 0), eO = (0, 1, 0), eU = (0, 0, 1) are the cor-
responding settings of the parameters λ in the formula of
FSDM ranking function (Equation 1). Because of linearity
of MLM ranking function with respect to w, we make use
of the coordinate ascent (CA) algorithm, proposed in [19],
to directly optimize MAP. The starting values for each ws

are uniform, i.e., equal to 1
F

each. Therefore, CA itera-
tively optimizes MAP by performing a series of line searches

Table 1: Proposed scheme for multi-fielded represen-
tation of entity e.

Field Condition

names o : ∃(e, p, o)&

p ∈ Pnames = regex(∗[name|label]$)

attributes o : ∃(e, p, o)&p ∈ Pdatatypes&p /∈ Pnames

categories o : ∃(e1, p1, e2)&(e2, p2, o)&

&p ∈ Pcategories&p2 ∈ Pnames

similar entity names o : ∃(e1, p1, e2)&(e2, p2, o)&

e2 ∈ Esim(e1)&p2 ∈ Pnames

related entity names o : ∃(e1, p1, e2)&(e2, p2, o)&
e2 /∈ Esim(e1)&p2 ∈ Pnames

along one coordinate direction under the constraint of non-
negativity of ws. It repeatedly optimizes each of the param-
eters ws

1, . . . , w
s
F , while holding all other parameters fixed.

Since MLMs are optimized independently, this stage can be
easily parallelized to speed-up the training process.
In the second stage (line 6), the algorithm optimizes the

parameters λ in Equation 1 on the same query set, given the
optimal values of ŵT , ŵO, ŵU . Again, since the right-hand
side of Equation 1 is a linear function with respect to λ, the
CA algorithm can be applied to maximize the target metric
directly. It starts with λ = (1, 0, 0), which is equivalent to
MLM ranking model, and iterates until the gain in MAP is
less than a given threshold. To avoid the changes of signs of
the document ranking scores that may distort the ranking,
non-negativity constraints on λ are enforced during CA.

3.3 Modeling Entity Descriptions
Since multi-fielded entity representation proved to be ben-
eficial for ERWD [21, 24], we propose a novel five-field en-
tity representation scheme (Table 1). Attribute values, that
satisfy the provided condition, are aggregated into the cor-
responding field.
The first two fields are the properties of the entities them-

selves. Other fields capture information from different enti-
ties that are related to the given entity. The names field
contains conventional names of the entities, such as the
name of a person or the name of an organization. Some
of the predicates that can be used for this purpose are la-
bel from RDF Schema9, name from FOAF Ontology10, or
/type/object/name from Freebase11. The attributes field in-
cludes all datatype properties, other than names. The ex-
amples are values of abstract and foundingDate predicates
from DBpedia. We found it to be helpful to include predi-
cate names along with the predicate values, e.g. “founding
date 1964”.
The next three fields are extracted from the names field

of related entities. The categories field combines classes or
groups, to which the entity can be assigned. In DBpedia,
the membership of entities in classes is represented using
the subject property, which corresponds to the categories of
a Wikipedia article. The profession and ethnicity attributes
for people or the industry attribute for companies in Free-
base have close semantics. The similar entity names field
aggregates the names of the entities that are very similar
or identical to a given entity, since it is often the case that

9http://www.w3.org/TR/rdf-schema/
10http://www.foaf-project.org/
11http://freebase.com



Table 2: Multi-fielded entity document for the U.S. president Barack Obama (the terms are preprocessed).

Field Content

names barack obama barack hussein obama ii

attributes 44th current president united states birth place honolulu hawaii

categories democratic party united states senator nobel peace prize laureate christian

similar entity names barack obama jr barak hussein obama barack h obama ii

related entity names spouse michelle obama illinois state predecessor george walker bush
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names attributes categories similar entity names related entity names

Figure 1: Field weights in mixtures of language models for (a) unigrams (b) ordered bigrams and (c) unordered
bigrams averaged over 5 folds for each query set.

different knowledge bases (or even the same one) can refer
to the same entity with different resource identifiers or de-
scribe it according to different schemata. In DBpedia, these
values can be obtained with S1 1 SPARQL query from [31]
that takes into account sameAs property from OWL schema
along with redirect and disambiguates from DBpedia. Fi-
nally, the related entity names field includes the names of
the entities that are part of the same RDF triple with a
given entity along with the predicate names, e.g. “spouse
michelle obama”. Table 2 provides an example of the entity
document created using the above approach.

4. EXPERIMENTS

4.1 Experimental setup
We compare the effectiveness of FSDM with existing entity
retrieval models based on a publicly available benchmark12

[2], which combines 485 queries and the corresponding rel-
evance judgments from the past entity retrieval evaluation
campaigns. The knowledge graph used in our evaluation is
DBPedia 3.713. DBPedia is a structured version of on-line

12http://bit.ly/dbpedia-entity
13http://wiki.dbpedia.org/Downloads37

encyclopedia Wikipedia, which provides the descriptions of
over 3.5 million entities belonging to 320 classes.

Table 3: Statistics of the query sets used for evalua-
tion.

Query set Amount Query types

SemSearch ES 130 Entity

ListSearch 115 Type

INEX-LD 100 Entity, Type, Attribute, Relation

QALD-2 140 Entity, Type, Attribute, Relation

We report the retrieval results obtained on the query sets
in Table 3:

• SemSearch ES: this query set primarily contains named
entity queries (e.g. “charles darwin”,“orlando florida”);

• ListSearch: this query set combines three query sets
(INEX-XER, SemSearch LS, TREC Entity) from [2],
since each one of them primarily consists of type queries
(e.g. “continents in the world”, “products of medim-
mune, inc.”);

• INEX-LD: this query set covers different types of
queries – named entity queries, type queries, relation
queries, and attribute queries (e.g. “einstein relativ-



ity theory”, “tango music composers”, “prima ballerina
bolshoi theatre 1960”);

• QALD-2: the Question Answering over Linked Data
query set contains natural language questions of 4 dif-
ferent types: e.g., “who created wikipedia?” (entity);
“give me all soccer clubs in Spain” (type); “what is
the currency of the czech republic” (attribute); “which
books by kerouac were published by viking press?” (re-
lation).

In total, there are 13,090 available positive relevance judg-
ments. Although some query sets (e.g. SemSearch) contain
graded relevance judgments, for the purpose of consistency,
we treat all relevance judgments as binary and report only
the corresponding retrieval metrics.
For all experiments in this work, we used the multi-fielded

entity descriptions constructed from DBpedia RDF graph
according to the method presented in Section 3.3. Indexed
terms were lower-cased, filtered using the INQUERY sto-
plist, and stemmed using the Krovetz stemmer. All retrieval
models used in the experiments reported in this work were
implemented using the Galago Search Engine1415. Parame-
ters of retrieval models were optimized with respect to the
Mean Average Precision (MAP) using the Galago’s imple-
mentation of the coordinate ascent learner based on 5-fold
cross validation. All reported evaluation metrics were macro-
averaged over 5 folds.

4.2 Parameter tuning
In this section, we discuss the details of optimization proce-
dure for the field weights w and SDM/FSDM parameters λ,
and provide our interpretation of the learned values.
To optimize the field weights in FSDM, we uniformly ini-

tialize them and run the CA algorithm under the sum nor-
malization and non-negativity constraints with 5 random
restarts. We do not optimize the Dirichlet priors µj in lan-
guage models and set them equal to the average (document
or field) lengths, respectively. For optimizing the vectors of
SDM parameters λT , λO, λU , we initialize them to (1, 0, 0)
and run the CA algorithm with 3 random restarts. The un-
ordered window size was set to 8 in all cases, as suggested
in previous work [3, 18].
We begin our analysis with the weights for unigramMLMs.

Figure 1a depicts the distribution of the learned field weights
averaged over all folds for each query set. Interestingly,
while fields have similar relative importance across most
query sets, some query sets (i.e. query types) are clear out-
liers. We observe that, compared to other query types, the
optimized model strongly favors names and similar entity
names fields for named entity queries (SemSearch ES query
set). The categories field is important for type queries (List-
Search), while on QALD-2 query set, FSDM puts particu-
larly strong emphasis on related entity names, which can be
explained by the fact that this query set mostly consists of
relation queries, which require capturing the related entity
context. INEX-LD query set includes a large number of at-
tribute queries that aim at finding entities primarily through
their attributes instead of names. Thus, we observe that the
model assigns higher weights to the attributes field.

14http://www.lemurproject.org/galago.php
15source code for all retrieval models used in this work as well
as run files is available at https://github.com/teanalab/
FieldedSDM

Since FSDM includes bigram language models, next we in-
vestigate the field weights in MLMs for ordered (Figure 1b)
and unordered (Figure 1c) bigrams. In particular, we ob-
serve that higher weights are assigned to names and simi-
lar entity names fields for entity queries, for which the or-
dered bigram matchings in these fields is an important rele-
vance factor. Another difference of bigram from unigram
MLMs is the increased importance of categories field for
other (non-entity) types of queries. This can be explained
by the fact that bigrams are more effective in matching
class names of entities than unigrams. For example, for the
query QALD2 tr-89 “give me all soccer clubs in the premier
league”, an English football club Bolton Wanderers F.C.,
which is a relevant entity, is assigned to a few DBpedia cat-
egories, including Premier League clubs. Given this query
intent, scoring entities based on matching bigrams club pre-
mier and premier league in the categories field is much more
effective than scoring based on matching unigrams, since
premier league is an important specification for the concept
soccer club and should be considered holistically, as a phrase.
From the perspective of modeling entity descriptions, we

can conclude that the attributes field is consistently consid-
ered to be a very valuable context for queries of any type.
The names field as well as the similar entity names field
are highly important for queries aiming at finding named
entities, while distinguishing categories from related entity
names is particularly important for type queries.
Overall, these findings support our initial hypothesis that

the field weights are dependent on query types. Next, we
focus on the analysis of the learned weights λ for SDM and
FSDM, the distribution of which is depicted in Figures 2a
and 2b. The optimal weights of SDM on all query sets, ex-
cept SemSearch ES, are close to the standard scheme of (0.8,
0.1, 0.1), which was shown to be optimal in several previous
works [3, 12, 18]. This discrepancy with SemSearch ES illus-
trates the significance of bigram matches for named entity
queries. The optimal weights of FSDM indicate increased
importance of bigram matches on every query set, especially
on QALD-2. It follows that transformation of SDM into
FSDM increases the importance of bigram matches, which
ultimately improves the retrieval performance, as we will
demonstrate next.

4.3 Comparison with the baselines
In this section, we present the results of comparing FSDM
with the state-of-the-art models for ERWD. In particular,
we use MLM-CA (unigram MLM optimized with respect to
the field weights wj by CA) and SDM-CA (SDM optimized
with respect to the λT , λO, λU weights by CA) as the base-
lines. We also used MLM as a baseline to test whether incor-
porating term dependencies leads to improvement of entity
retrieval. SDM leverages only unstructured entity descrip-
tions, in which all fields are merged into a single document.
The difference with SDM is measured to show the impor-
tance of fielded document representation for ERWD. Addi-
tionally, we report the results of the PRMS model using our
entity descriptions, since it has been previously shown to
have good performance in case of two-fielded entity repre-
sentations. Finally, we include the results recomputed from
the run files of the methods used for evaluation in [2].
Table 4 summarizes the retrieval results of all models on

SemSearch ES, ListSearch, INEX-LD, QALD-2 query sets,
and the entire query set. MAP and a preference-based mea-
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Figure 2: Values of λ in (a) SDM; (b) FSDM averaged over 5 folds for each query set.
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Figure 3: Topic-level differences in average precision between FSDM and SDM. over a) All queries; b) Sem-
Search ES; c) ListSearch; d) INEX-LD; e) QALD-2 query sets. Positive values indicate FSDM is better.

sure (b-pref) are calculated at the top 100 results. As fol-
lows from Table 4, the SDM-CA and MLM-CA baselines
(optimized SDM and MLM) both outperform previously pro-
posed models on the entire query set, most significantly on
QALD-2 and ListSearch query sets. However, the perfor-
mance of SDM remarkably drops on SemSearch ES query set.
To make sure that SDM-CA is not overfit, we run SDM us-
ing a standard weighting scheme (0.8, 0.1, 0.1) and got very
close results with respect to MAP – 0.258 on SemSearch ES,

0.196 on ListSearch, 0.114 on INEX-LD, 0.186 on QALD-2,
and 0.193 on the query set including all queries.
The results of PRMS are significantly worse compared to

MLM in our settings, which indicates that the performance
of this model degrades in case of a large number of fields in
entity descriptions. Bag-of-words models, such as BM25 and
LM, achieve comparable results with structured document
retrieval models on the more heterogeneous INEX-LD query
set, which includes the queries of different types.



Table 4: Comparison of retrieval models on SemSearch ES, ListSearch, INEX-LD, QALD-2 query sets using
the benchmark in [2]. ”*” and ”†” indicate statistically significant improvement over MLM-CA and SDM-CA
baselines, respectively, as measured by the Fisher’s randomization test (α = 0.05) [30]. Relative improvement
over MLM-CA/SDM-CA is shown in parenthesis.

SemSearch ES

MAP P@10 P@20 b-pref

LM [2] 0.314† (−1.9%/+23.6%) 0.251† (+0.4%/+24.3%) 0.179† (0.0%/+20.1%) 0.655 (−2.8%/−2.4%)

BM25 [2] 0.326† (+1.9%/+28.3%) 0.256† (+2.4%/+26.7%) 0.177† (−1.1%/+18.8%) 0.658 (−2.4%/−1.9%)

MLM-tc [2] 0.354† (+10.6%/+39.4%) 0.284∗† (+13.6%/+40.6%) 0.200∗† (+11.7%/+34.2%) 0.694 (+3.0%/+3.4%)

BM25F-tc [2] 0.334† (+4.4%/+31.5%) 0.263† (+5.2%/+30.2%) 0.180† (+0.6%/+20.8%) 0.666 (−1.2%/−0.7%)

PRMS [2] 0.323† (+0.9%/+27.2%) 0.251† (+0.4%/+24.3%) 0.175† (−2.2%/+17.4%) 0.657 (−2.5%/−2.1%)

PRMS 0.230∗ (−28.1%/−9.4%) 0.177∗† (−29.2%/−12.4%) 0.125∗† (−30.2%/−16.1%) 0.569∗† (−15.6%/−15.2%)

MLM-CA 0.320 0.250 0.179 0.674

SDM-CA 0.254∗ (−20.6%) 0.202∗ (−19.2%) 0.149∗ (−16.8%) 0.671 (−0.4%)

FSDM 0.386∗
† (+20.6%/+52.0%) 0.286∗

† (+14.4%/+41.6%) 0.204∗
† (+14.0%/+36.9%) 0.750∗

† (+11.3%/+11.8%)

ListSearch

MAP P@10 P@20 b-pref

LM [2] 0.161† (−15.3%/−18.3%) 0.216∗† (−14.3%/−14.3%) 0.170∗† (−11.5%/−15.8%) 0.403† (−5.8%/−14.4%)

BM25 [2] 0.167† (−12.1%/−15.2%) 0.232 (−7.9%/−7.9%) 0.186 (−3.1%/−7.9%) 0.414† (−3.3%/−12.1%)

MLM-tc [2] 0.153∗† (−19.5%/−22.3%) 0.195∗† (−22.6%/−22.6%) 0.16∗† (−16.7%/−20.8%) 0.398† (−7.0%/−15.5%)

BM25F-tc [2] 0.159∗† (−16.3%/−19.3%) 0.221∗† (−12.3%/−12.3%) 0.174† (−9.4%/−13.9%) 0.402† (−6.1%/−14.6%)

PRMS [2] 0.178 (−6.3%/−9.6%) 0.240 (−4.8%/−4.8%) 0.200 (+4.2%/−1.0%) 0.407† (−4.9%/−13.6%)

PRMS 0.111∗† (−41.6%/−43.7%) 0.154∗† (−38.9%/−38.9%) 0.121∗† (−37.0%/−40.1%) 0.310∗† (−27.6%/−34.2%)

MLM-CA 0.190 0.252 0.192 0.428

SDM-CA 0.197 (+3.7%) 0.252 (0.0%) 0.202 (+5.2%) 0.471∗ (+10.0%)

FSDM 0.203 (+6.8%/+3.0%) 0.256 (+1.6%/+1.6%) 0.203 (+5.7%/+0.5%) 0.466∗ (+8.9%/−1.1%)

INEX-LD

MAP P@10 P@20 b-pref

LM [2] 0.106 (+3.9%/−9.4%) 0.236 (−0.8%/−8.5%) 0.188 (−1.1%/−5.5%) 0.290† (−8.8%/−13.4%)

BM25 [2] 0.118 (+15.7%/+0.9%) 0.247 (+3.8%/−4.3%) 0.204 (+7.4%/+2.5%) 0.309† (−2.8%/−7.8%)

MLM-tc [2] 0.104† (+2.0%/−11.1%) 0.232† (−2.5%/−10.1%) 0.197† (+3.7%/−1.0%) 0.288† (−9.4%/−14.0%)

BM25F-tc [2] 0.117 (+14.7%/0.0%) 0.249 (+4.6%/−3.5%) 0.200 (+5.3%/+0.5%) 0.304† (−4.4%/−9.3%)

PRMS [2] 0.084∗† (−17.6%/−28.2%) 0.203∗† (−14.7%/−21.3%) 0.163∗† (−14.2%/−18.1%) 0.256∗† (−19.5%/−23.6%)

PRMS 0.064∗† (−37.3%/−45.3%) 0.145∗† (−39.1%/−43.8%) 0.123∗† (−35.3%/−38.2%) 0.216∗† (−32.1%/−35.5%)

MLM-CA 0.102 0.238 0.190 0.318

SDM-CA 0.117∗ (+14.7%) 0.258 (+8.4%) 0.199 (+4.7%) 0.335 (+5.3%)

FSDM 0.111∗ (+8.8%/−5.1%) 0.263∗ (+10.5%/+1.9%) 0.215∗
† (+13.2%/+8.0%) 0.341∗ (+7.2%/+1.8%)

QALD-2

MAP P@10 P@20 b-pref

LM [2] 0.107∗† (−29.6%/−41.8%) 0.051∗† (−50.5%/−51.9%) 0.042∗† (−50.0%/−53.3%) 0.233∗† (−37.5%/−49.9%)

BM25 [2] 0.118† (−22.4%/−35.9%) 0.066∗† (−35.9%/−37.7%) 0.053∗† (−36.9%/−41.1%) 0.311∗† (−16.6%/−33.1%)

MLM-tc [2] 0.099∗† (−34.9%/−46.2%) 0.051∗† (−50.5%/−51.9%) 0.037∗† (−56.0%/−58.9%) 0.239∗† (−35.9%/−48.6%)

BM25F-tc [2] 0.107∗† (−29.6%/−41.8%) 0.062∗† (−39.8%/−41.5%) 0.049∗† (−41.7%/−45.6%) 0.292∗† (−21.7%/−37.2%)

PRMS [2] 0.105∗† (−30.9%/−42.9%) 0.069∗† (−33.0%/−34.9%) 0.051∗† (−39.3%/−43.3%) 0.260∗† (−30.3%/−44.1%)

PRMS 0.120∗† (−21.1%/−34.8%) 0.079∗† (−23.3%/−25.5%) 0.067∗† (−20.2%/−25.6%) 0.328† (−12.1%/−29.5%)

MLM-CA 0.152 0.103 0.084 0.373

SDM-CA 0.184 (+21.1%) 0.106 (+2.9%) 0.090 (+7.1%) 0.465∗ (+24.7%)

FSDM 0.195∗ (+28.3%/+6.0%) 0.136∗
† (+32.0%/+28.3%) 0.111∗ (+32.1%/+23.3%) 0.466∗ (+24.9%/+0.2%)

All queries

MAP P@10 P@20 b-pref

LM [2] 0.175∗† (−10.7%/−8.9%) 0.182∗† (−11.7%/−8.1%) 0.139∗† (−11.5%/−10.3%) 0.398∗† (−12.5%/−19.6%)

BM25 [2] 0.186 (−5.1%/−3.1%) 0.194 (−5.8%/−2.0%) 0.149 (−5.1%/−3.9%) 0.428∗† (−5.9%/−13.5%)

MLM-tc [2] 0.181 (−7.7%/−5.7%) 0.185∗† (−10.2%/−6.6%) 0.143∗† (−8.9%/−7.7%) 0.409∗† (−10.1%/−17.4%)

BM25F-tc [2] 0.182 (−7.1%/−5.2%) 0.192∗ (−6.8%/−3.0%) 0.145∗† (−7.6%/−6.5%) 0.421∗† (−7.5%/−14.9%)

PRMS [2] 0.176∗† (−10.2%/−8.3%) 0.186∗ (−9.7%/−6.1%) 0.143∗† (−8.9%/−7.7%) 0.400∗† (−12.1%/−19.2%)

PRMS 0.136∗† (−30.6%/−29.2%) 0.136∗† (−34.0%/−31.3%) 0.107∗† (−31.8%/−31.0%) 0.365∗† (−19.8%/−26.3%)

MLM-CA 0.196 0.206 0.157 0.455

SDM-CA 0.192 (−2.0%) 0.198 (−3.9%) 0.155 (−1.3%) 0.495∗ (+8.8%)

FSDM 0.231∗
† (+17.9%/+20.3%) 0.231∗

† (+12.1%/+16.7%) 0.179∗
† (+14.0%/+15.5%) 0.517∗

† (+13.6%/+4.4%)



We also observe that FSDM significantly outperforms the
MLM-CA baseline on all query sets and all metrics, except
ListSearch. FSDM also significantly outperforms SDM-CA
on SemSearch ES and the entire query set with respect to all
evaluation metrics. On the remaining query sets, FSDM is
more effective than SDM in all but two cases (on INEX-LD
with respect of MAP and on ListSearch with respect to b-
pref; however, the difference in both cases is not significant),
including statistically significant improvement on INEX-LD
with respect to P@20 and on QALD-2 with respect to P@10.

4.4 Success/Failure Analysis
In this section, we present the results of quantitative and
qualitative analysis of errors in the search results. First,
Figure 3 illustrates the per-topic differences in average pre-
cision between FSDM and SDM. From Figure 3, it follows
that, on the entire query set, FSDM performs better than
SDM on a larger number of topics than vice versa, with
the most significant difference on SemSearch ES query set.
QALD-2 has the largest number of queries with no perfor-
mance differences, since both FSDM and SDM fail to find
any relevant results for 28 out of 140 queries from this fairly
difficult query set.
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Figure 4: Robustness of SDM and FSDM methods
with respect to the MLM-CA baseline over the en-
tire query set.

As the next experiment, we analyze the robustness of SDM
and FSDM compared to the MLM-CA baseline on the entire
query set. Figure 4 shows the histogram for various ranges
of relative decreases and increases in MAP with respect to
MLM-CA and indicates that FSDM is more robust com-
pared to SDM. In particular, it improves the performance
of 50% of the queries with respect to MLM-CA, compared
to 45% of the queries improved by SDM. At the same time,
FSDM decreases the performance of only 26% of the queries,
while SDM degrades the performance of 40% of the queries.
Next, we focus on a more detailed qualitative analysis of

queries showing the highest relative gain in terms of MAP.
In particular, we observe that a common mistake of SDM
on named entity queries is overestimation of importance of
matches in the fields other than names. For example, for the
query SemSearch ES-22“city of charlotte”, SDM mistakenly
promotes the entities, such as Anthony Foxx, a former mayor
of Charlotte, or Clayton Heafner, an American golfer, who

lived in this city. Therefore, using SDM for type queries
may result in a topic drift and decreased precision. For ex-
ample, for the query QALD2 tr-89 “give me all soccer clubs
in the premier league”, SDM ranks higher the soccer clubs
from the premier leagues in Tasmania (Northern Rangers)
and New Zealand (Metro F.C.). Similar effect is observed
for the query INEX XER-121“us presidents since 1960”, for
which SDM promotes the entities with matched bigrams and
unigrams in the fields of minor importance, such as List of
people on stamps of Liberia, whereas FSDM correctly em-
phasizes term matches in categories and ranks the correct
results, such as Gerald Ford, Theodore Roosevelt, and Ronald
Reagan at the top.
We also observed that a common cause of many FSDM fail-

ures is neglecting the important query terms. For example,
for the TREC Entity-9 query “members of the beaux arts
trio”, FSDM mistakenly promotes the entities Emmanuel
Pontremoli and Pierre Carron, the members of the Académie
des Beaux Arts, which is caused by matching bigrams mem-
bers beaux and beaux arts in the categories field. However,
the query term trio provides an important clue that the
query intent is about Beaux Arts Trio, a famous piano trio,
which FSDM is unable to pick up. Similar reasoning applies
to the QALD2 tr-15 query “who created goofy”, for which
FSDM drifts to cartoons rather than information about the
actual character creator, and the QALD2 te-90 query“where
is the residence of the prime minister of spain?”, for which
FSDM promotes the Spanish prime ministers in retrieval re-
sults, instead of the exact answer to the question.
The reason of FSDM failure on another difficult query

SemSearch LS-10 “did nicole kidman have any siblings” is
slightly different. The most precise answer, Antonia Kid-
man, who is the younger sister of the actress Nicole Kid-
man, does not contain any occurrences of the query term
sibling. In this case, SDM ranks higher a DBpedia disam-
biguation page that mentions the right entity. At the same
time, FSDM tends to return the movies starring Nicole Kid-
man as the top results. We hypothesize that query expan-
sion with synonyms can potentially resolve these issues, how-
ever we leave verification of this hypothesis to future work.

Table 5: Comparison of SDM and FSDM on queries
of various difficulty (according to the number of pos-
itive relevance judgments). ”†” indicates statistical
significance with respect to the Fisher’s randomiza-
tion test (α = 0.05) [30].

Difficult queries

MAP P@10 P@20 b-pref

SDM 0.213 0.067 0.042 0.599

FSDM 0.239 0.065 0.043 0.621

Medium queries

MAP P@10 P@20 b-pref

SDM 0.209 0.224 0.165 0.532

FSDM 0.264† 0.272† 0.191† 0.559†

Easy queries

MAP P@10 P@20 b-pref

SDM 0.139 0.298 0.262 0.316

FSDM 0.166† 0.345† 0.309† 0.330

To complete the analysis of retrieval performance of FSDM,
Table 5 compares the performance of SDM and FSDM on
queries of various levels of difficulty. To obtain the results



in Table 5, we grouped all the queries into three categories:
difficult queries (that have 3 or less positive relevance judg-
ments), medium queries (with 4 to 20, i.e., potential first
two SERPs) and easy queries (that have more than 20 posi-
tive relevance judgments associated with them). As a result,
we obtained 141, 216, and 128 queries in each category, re-
spectively. From Table 5 it follows that FSDM outperforms
SDM in each query category with respect to all metrics in
all the cases but one (P@10 for difficult queries), with the
most significant difference in performance on medium and
easy queries. We, therefore, conclude that creating sophisti-
cated entity descriptions is not sufficient for answering diffi-
cult queries in entity retrieval scenario and better capturing
the semantics of query terms is required to further improve
the precision of FSDM for difficult queries.

5. CONCLUSION
This paper proposed Fielded Sequential Dependence Model,
a novel retrieval model, which incorporates term dependen-
cies into structured document retrieval, and a two-stage algo-
rithm to directly optimize the parameters of this model with
respect to the target retrieval metric. Although we only ex-
perimented with ERWD, FSDM can be applied to retrieval
from collections of structured documents of any type.
We demonstrated that having different field weighting sche-

mes for unigrams and bigrams is effective for different types
of queries in ad-hoc entity retrieval scenario. Experimental
evaluation of FSDM on a standard publicly available bench-
mark showed that it consistently and, in most cases, statis-
tically significantly outperforms state-of-the-art structured
and unstructured retrieval models for ERWD.
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