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Abstract

The recently introduced task of Conversational Entity Retrieval
from a Knowledge Graph (CER-KG) presents unique research chal-
lenges due to the complexity of the queries along with the neces-
sity to consider KG structure and the context of an information-
seeking dialog. This paper proposes a novel approach to CER-KG
that first constructs a sub-graph around each candidate response
entity, which includes its neighboring KG components, such as
other entities, literals, categories and predicates, and then scores
and ranks each candidate answer entity with Diverse Relevance
signal Aggregation via Graph cONvolution (DRAGON), a novel
learning-to-rank neural architecture for CER-KG. Unlike previous
approaches to CER-KG, DRAGON directly takes a large number
of fine-grained relevance signals as input and learns to effectively
aggregate and transform those signals into the ranking scores of
candidate response entities. In particular, a set of sparse and struc-
tured vectors of relevance features used as input to DRAGON mea-
sure lexical and semantic similarity between a query in the current
turn or responses from the past turns of an information-seeking
dialog and each node in the candidate response entity’s sub-graph.
DRAGON then propagates the relevance signals in feature vectors
around the sub-graph using graph convolution layers and aggre-
gates those signals into the candidate response entity ranking score
with multi-head attention and fully-connected layers. This design
enables DRAGON to attenuate noisy relevance signals from the lo-
cal KG neighborhood during propagation and attend to the signals
from the most important nodes in the candidate entity sub-graph.
Our results demonstrate that DRAGON yields significant gains
in retrieval accuracy over the previously proposed approach for
CER-KG and performs comparably to a much larger fine-tuned
cross-encoder architecture.
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1 Introduction

With the growing popularity of knowledge graphs (KGs), the need
for efficient and effective access to the vast information stored in
them has become increasingly important. Entity Retrieval from a
Knowledge Graph (ERKG) [9, 13, 14, 19], a well-studied problem
where a ranked list of entities from a given KG, such as DBpedia
[17] or Wikidata [33], needs to be retrieved and ranked in response
to a textual query, is an important step towards addressing this need.
The recently introduced task of Conversational Entity Retrieval
from a Knowledge Graph (CER-KG) [39], an extension of ERKG
to a conversational setting, and QBLink-KG [39], a benchmark for
CER-KG used in this work, pose unique challenges to IR methods
due to the complexity of queries and KG structure as well as the
necessity to consider the multi-turn context of an information-
seeking dialog. For example, consider the query “In 1967, this Soviet
spaceflight crashed, killing Vladimir Komarov, who became the first
in-flight fatality in the history of space exploration” from QBLink-
KG. As shown in Figure 1, the only text associated with “Soyuz
17, “Voskhod 1” and “Vostok 3”, the candidate response entities for
this query, are their names, which have no lexical overlap with the
query. However, there are many other components of DBpedia, the
target KG of QBLink-KG, such as entities (e.g. “Viadimir Komarov”),
predicates (e.g. “crashed in”), literals (e.g. “Spacecraft launched in
1967”) and categories (e.g. “space accidents and incidents”) in the
same KG triplets with the candidate response entities, which can
be viewed as clues that can separate the correct response (“Soyuz
1”) from very similar (all three candidates are Soviet spacecrafts
from the 1960s), but incorrect ones (“Voskhod 1” and “Vostok 3”).
This example also illustrates other key challenges of CER-KG: (1)
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queries are verbose and contain both essential clues (“1967”, “Soviet
spaceflight”, “crashed”, “killing Vladimir Komarov”) to locating the
correct response and additional details (“the first in-flight fatality
in the history of space exploration”) that aren’t valuable from re-
trieval perspective, and may potentially mislead CER-KG methods
to returning incorrect responses; (2) candidate entity sub-graph for
the correct response entity (“Soyuz 1”) besides important relevance
signals also contains a significant number of noisy signals in the
form of the nodes, such as “1967 in the Soviet Union”, “mission” and
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Figure 1: DBpedia sub-graphs with various KG components from the same triplets with the candidate response entities for the
query “In 1967, this Soviet spaceflight crashed, killing Vladimir Komarov, who became the first in-flight fatality in the history of
space exploration”. The sub-graph of the correct response entity “Soyuz 1” is highlighted with a dashed rectangle.

“Human spaceflights”, which, despite lexical and semantic overlap
with the query, are also part of the sub-graphs for other candidate
entities, thereby not helping to pinpoint the correct response; (3)
since queries in CER-KG are part of multi-turn interactions, conver-
sational context in the form of the preceding dialog turns should
be taken into account when ranking responses for the current turn.

An existing approach to CER-KG [39] first builds 10-dimensional
feature vectors for candidate answer entities. Each dimension in
these vectors corresponds to a coarse-grained feature aggregat-
ing lexical or semantic similarity scores between the current-turn
query or a preceding answer and all KG structural components
of the same type (entities, literals, predicates, categories) in the
entire candidate answer entity sub-graph. This approach then ranks
candidate answer entities based on their compact feature vectors
by a multi-layer feed-forward neural network.

This paper proposes and explores an alternative approach to
feature computation, aggregation and transformation into the can-
didate response ranking score. Specifically, the proposed approach
first constructs a sub-graph around each candidate response entity,
where the nodes are the candidate entity itself along with various
KG components (entities, predicates, categories and literals) in the
same KG triplets, and then computes a structured vector of fine-
grained relevance features for each node in this sub-graph. The
diverse relevance signals in these sparse feature vectors capture
lexical (based on term overlap) and semantic (based on distributed
representations) similarity between each node in the candidate
entity sub-graph and the current-turn query or the dialog context.

The feature vectors associated with the nodes of the candidate
entity sub-graph are propagated, aggregated and transformed into a
ranking score of the candidate entity with Diverse Relevance signal
Aggregation via Graph cONvolution (DRAGON), a novel learning-
to-rank architecture for CER-KG that consists of graph convolution,
multi-head attention and fully-connected layers. Unlike the prior
approach to CER-KG [39] that, by adopting straightforward aggre-
gation of a large number of relevance signals into compact feature

vectors, disregards the candidate entity’s local sub-graph topology
and loses the ability to control the influence of each node on the
relevance score of the candidate entity, DRAGON takes as input
a large number of vectors with fine-grained relevance signals and
learns to effectively aggregate and transform those vectors into
the ranking scores of candidate responses. Graph convolution lay-
ers enable DRAGON to amplify relevance signals from important
nodes in the candidate sub-graph and attenuate signals from the
noisy ones. To improve the transformation of aggregated relevance
signals into a ranking score, DRAGON applies a multi-head self-
attention to the relevance vectors for the nodes in the candidate
entity sub-graph obtained through graph convolutions. This allows
DRAGON to dynamically weigh the influence of similar nodes in
the KG neighborhood of the candidate answer on its relevance to the
query, capturing relevance patterns missed by graph convolutions.

In summary, this paper addresses two key research questions in
the context of CER-KG: (1) how to accurately capture fine-grained
semantic and lexical relevance signals for candidate answer entity
ranking? and (2) how to efficiently aggregate diverse relevance
signals into the ranking score of candidate KG answer entities
in a KG structure- and dialog-aware fashion? Its main technical
contributions are: (1) novel approach and learning-to-rank neural
architecture for CER-KG that utilize sparse feature vectors directly
capturing fine-grained and dialog-aware semantic and lexical rele-
vance signals in the candidate answer entities and their immediate
KG neighborhood; (2) innovative application of graph convolutional
networks (GCNs) and self-attention to propagate, filter and aggre-
gate diverse relevance features into the ranking scores of candidate
responses in learning-to-rank neural architectures.

2 Related Work
2.1 Graph Convolutional Networks

By enabling controlled representation learning on graphs, GCNs
constitute one of the methodological backbones of our approach.
The original spectral GCN [16] introduced a localized first-order
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approximation of graph convolutions, producing node represen-
tations that fuse feature information with local graph topology.
Subsequent GCN variants, such as the inductive graph sampling
and aggregation (GraphSAGE) model [12] learn local neighbor-
hood sampling and aggregation functions that generalize to unseen
nodes, while the relational GCN architecture [26] extends the ba-
sic convolution to multi-relational edges, enabling to address two
important KG-related tasks: entity classification and link predic-
tion. Other graph neural network (GNN) architectures incorporate
attention and address scalability issues. In particular, in Graph At-
tention Networks [31] each node can learn to attend to neighbors
with different weights, and Message Passing Neural Networks [10]
provide a unifying view of GNNs through iterative message and
update functions. These advances demonstrated that representa-
tions of graph nodes can be enriched by propagating information
from other nodes, making GCNs a powerful tool for reasoning on
KGs.

2.2 GCN-based Approaches to QA and KGQA

Some of the previously proposed methods for Knowledge Graph
Question Answering (KGQA) ground a natural language question
and candidate answers in a subgraph of a KG and then apply a GNN
to reason over that subgraph. These methods can be divided into
three methodological categories: 1) Methods for multi-hop GNN-
based reasoning over a static subgraph: Knowledge-Aware
Graph Networks [18] constructs a schema graph from ConceptNet
connecting question and answer entities and uses a GCN combined
with Long Short-Term Memory networks and hierarchical path-
based attention to score each candidate answer. Likewise, the Multi-
hop Graph Relation Network [8] attaches a multi-hop relational
reasoning module to a pre-trained language model, performing
multi-hop, multi-relational inference over a subgraph of the KG.
QA-GNN [37] further connects the question and answer context
with the KG by merging question and answer nodes into a joint
graph; node representations for both text and KG elements are then
mutually updated via a GNN, enabling the model to learn jointly
assess relevance and reason. 2) Fusion of KG and text for open-
domain QA: GRAFT-Net [28] fuses text and KG by constructing a
question-specific heterogeneous subgraph of text passages and KG
entities, and applies a GNN over this subgraph to extract answers.
PullNet [27] iteratively builds a question-focused subgraph with a
GCN pinpointing which current nodes merit expansion from a text
corpus or a KG to grow the subgraph, and a similar GCN is used
to extract the answer from the subgraph. 3) GNNs for conversa-
tional QA: EXPLAIGNN [5] builds a heterogeneous graph from
a mixture of sources and then iteratively reduces this graph via a
GNN to locate the answer.

This prior work demonstrates that question subgraph-based rea-
soning can improve candidate answer selection, yet none of the
previously proposed methods apply GCNs or GNNs to aggregate
relevance feature vectors of the nodes in those subgraphs into candi-
date answer scores. Furthermore, they do not weave conversational
context into the sub-graph itself - in the proposed approach, each
node in the sub-graph is associated with a vector of features cap-
turing similarity with a current query and the dialog context. In
DRAGON, the GCN layers propagate these dialog-aware relevance
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signals, acting as feature aggregators and filters rather than being a
machinery for learning graph node representations that GCNs were
originally invented for.

2.3 Entity Retrieval from KGs and Its
Conversational Extension

The task of ERKG, which is conceptually (results are always enti-
ties) and methodologically (resulting entities, unlike KGQA, can be
obtained with traditional IR pipelines consisting of candidate selec-
tion and ranking steps), has been studied in parallel with KGQA.
By constructing a plain [22] or multi-field [4, 20, 29, 41] entity doc-
ument from all information about an entity provided by a KG (such
as textual labels, predicates, attribute values, and categories), early
methods framed ERKG as ad hoc plain or structured document
retrieval with candidate entity document selection based solely on
lexical overlap with queries and scoring done by traditional (TF-IDF,
BM25, BM25F) retrieval functions [22, 29]. Building on that foun-
dation, specialized lexical retrieval models [20, 41] and non-neural
learning-to-rank approaches [4] adopted the same structured en-
tity documents, but focused on more effectively combining lexical
matching statistics, yielding consistent improvements in retrieval
accuracy.

The neural approaches to ERKG range from attentive feed-forward
networks to determine important phrases in queries and learn per-
field relevance weights while matching query and entity text in a
shared latent space [1] to transformer-based encoders that map both
queries and entities to dense representations [9, 35] or decoders
that autoregressively generate answer entities directly [6]. Moving
beyond point-wise embeddings, Query2Box [24] represents both
conjunctive queries and KG entities as hyper-rectangular regions
in the same vector space, thereby capturing intersection semantics
and hierarchical constraints that plain embeddings cannot. Recent
approaches moved towards graph-based reasoning that exploits the
topology of the query-induced subgraph. Specifically, such methods
first construct a subgraph anchored in the query and then apply a
ranking model to score the nodes of this subgraph [14].

3 Proposed Approach

Given an information-seeking dialog D = {(q1,71),...,(qn,rn)}
with n turns, the task of CER-KG defined in [39] is to produce a
response r; for the query g; in the ith dialog turn, which is a KG
entity that can be obtained by retrieving and ranking a set of can-
didate answer entities Cy, from a KG while taking into account
the dialog context in the form of the responses from the preceding
turns r;_1, ..., r; of D. The proposed approach to CER-KG! illus-
trated in Figure 2 consists of three steps: 1) selection of candidate
response entities and construction of the sub-graphs around them;
2) feature extraction; and 3) ranking of candidate response entities
with DRAGON; which are discussed in detail below.

3.1 Candidate Answer Entities Selection and
Sub-graphs Construction

Given the massive scale of modern KGs, information-seeking ap-
proaches involving them require strategies to narrow down the

Isource code is publicly available at https://github.com/teanalab/DRAGON
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Figure 2: An overview of the proposed approach for conversational entity retrieval from a knowledge graph.

search space. To this end, the ERKG, CER-KG, and KGQA methods
first typically select a sub-graph or a set of sub-graphs from a KG,
which are then used to obtain the response(s). In a similar vein,
given a query g; in the ith turn of an information-seeking dialog
D, the proposed approach uses the method in [39] to select a set
of candidate response entities Cq; = {c1,¢2, ..., ¢} for this dialog
turn, which includes all KG entities linked from qiz and all other
KG entities in the same KG triplets as the linked entities. Next, a
sub-graph Gc; = (V;;, &c;) specific to each candidate response en-
tity ¢;j € Cg, is constructed. The set of nodes V¢, in this sub-graph
consists of the candidate response entity c; and all its immediate
neighbors N(c j) in a KG, which includes all entities, predicates,
categories or literals that are part of the same KG triplets as c;.
Undirected edges &; in this sub-graph are between c; and each
KG neighbor n € N(c;) that belongs to the same KG triplet. The k
sub-graphs {Gc,, ..., G, } that are constructed for each candidate
response entity to g; contain both relational and textual information
about it from a KG. Based on the findings from the prior work on
CER-KG [39], all relevance signals necessary to identify the correct
response entity are localized within the local KG neighborhood
around it. The key challenges facing CER-KG methods are thus to
accurately capture and aggregate those signals into the ranking
scores of candidate response entities that place the correct response
over incorrect ones.

Given significant variance in the degree of entities in a typical
KG, the proposed method employs a two-step pruning procedure to

2to ensure fair comparison, we used the same entity linker as in [39]

ensure manageable size of all candidate entity sub-graphs. The first
step in this procedure limits the maximum size of these sub-graphs
to eliminate the outliers, while a more sophisticated approach is
employed in the second step to reduce the size of these sub-graphs.

To determine the upper bound for the size of candidate entity
sub-graphs, we examined the number of neighboring nodes for can-
didate answer entities for queries in the training set. This analysis
revealed that 90% of the candidate answer entities have fewer than
1,000 nodes in their sub-graphs. To eliminate the negative effect of
outlier candidate answer entities with more than 1,000 neighboring
nodes on the efficiency of the semantics-based approach employed
in the second step while also preserving representativeness of the
sub-graphs, we randomly retained 1,000 of each outlier entity’s
neighboring nodes. Candidate entity sub-graphs with fewer than
1000 nodes were unaffected by this step.

To decrease the size of candidate entity sub-graphs by eliminat-
ing the parts that are unlikely to contain any significant relevance
signals, we employed a pruning method from [14]. Specifically, we
fine-tuned the pre-trained BERT [7] model to determine the degree
of semantic relatedness of all entities in the candidate entity sub-
graph to the query. As illustrated in the sub-graph pruning section
of Figure 2, the query g; and each node n in the sub-graph N'(c;)
for the candidate response entity c; are scored with the function o
below that is based on the neural architecture with BERT encoder,
dropout and linear projection layers from [14] to identify the least
relevant nodes to the query g; according to:
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o(qi,n) =A * cos(BERT ;;s(qi), BERT ;j5(n))+
(1-2) =6(qi,n)

where BERT .j¢(-) denotes the scalar output obtained from the
last layer of this architecture - linear projection of the embedding
of the [CLS] token, cos(-, -) denotes the cosine similarity function, A
€ [0,1] is a hyperparameter to balance the two components of the
scoring function and 6 (-, -) is the ground truth semantic relatedness
score computed as follows:

1

5 (g n) 1, ifn € N(cj) and c; is relevant,
6(qi,n) =
a —1, otherwise.

The above model was trained on the training set of QBLink-KG
using the mean squared error loss. We then ranked all nodes in each
candidate entity sub-graph with the trained model and retained
100 top-ranked nodes in each sub-graph.

3.2 Feature Extraction

To accurately assess the relevance of each candidate entity c; €
C(qi) to qi, a feature vector h containing diverse relevance signals
is first constructed for c; and each n € V. This vector captures
lexical and semantic similarity scores between c; or n and g; as well
as the information-seeking dialog context that consists of r;_; and
ri—2, the responses in two preceding information-seeking dialog
turns®, and was shown to be important for the accurate assessment
of the relevance of c; in prior work on CER-KG [39]. ¢; € R!2
or i € R'2, 12-element sparse feature vectors associated with cj
orn € V,; are constructed using lexical fi,(-,-) and semantic
fs (-, +) similarity scoring functions based on lexical and distributed
representations of cjorn and qi, ti—1, ri-2:

h= [ent,,, lit,,, pred,,, caty,, resp;,l, resp;z, )
ents, Llitg, pred;, cats, resps_l, resps_z], @
where h corresponds to ¢; in the case of the feature vector for a
candidate answer entity c;j and to 7 in the case of the feature vector
for a node n € V;;. The functions used to compute the features,
along with the feature descriptions, are provided in Table 1.
There are two important differences between the feature vec-
tors used as input to DRAGON and the feature vectors employed
by NACER, a previously proposed neural architecture for entity
ranking in CER-KG [39]. First, unlike the method in [39], which
constructs vectors of coarse-grained features only for candidate an-
swer entities, the proposed method captures fine-grained relevance
signals directly in the feature vectors corresponding to each node in
the candidate answer entity sub-graph. DRAGON then propagates
and aggregates those feature vectors using graph convolutions in
subsequent layers. Second, as a consequence of their fine-grained
nature, the feature vectors constructed by the proposed method
are sparse, since the vector elements that correspond to the node
types other than the one that the node associated with the vector
belongs to are set to zero (e.g. the elements ent,,, pred,,, cat.,,
entg, preds, catg of the feature vector for a literal are set to 0). This

3since information-seeking dialogs in QBLink-KG consist of up to 3 turns. DRAGON

feature vectors can be easily expanded to accommodate more preceding responses
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ensures that each feature vector, regardless of the type of the node
it corresponds to, has a consistent size and structure that preserves
type-specific information during feature vector aggregation.

Lexical features are computed as a weighted Jaccard similarity
coefficient between the bag-of-word token sets A = {ay,...,an}
and B = {b1,...bm }:

ZweAns SIF(w)
ZweﬂUB SIF(W))

When computing lexical similarity, each token w is assigned a
smoothed inverse frequency weight [25]:

fw(A,B) = ®G)

A

where A is a hyperparameter and n(w) is the frequency of w
in the KG. This way, fi,(A, B) quantifies lexical similarity as the
term overlap between A and B normalized by the union of distinct
terms in both sets while prioritizing rare (i.e. low-frequency) terms.

Semantic features are computed using a non-parametric func-
tion f;(a,b) based on a and b, distributed (i.e. dense vector) repre-
sentations of a and b. We experiment with the following approaches
for computing semantic similarity between the distributed repre-
sentations of gj, r;—1, ri—2 and the nodes n € N(cj). All of these
approaches utilize publicly available* same-space embeddings of
words and entities, predicates, categories, and literals in DBpedia
created by the KEWER method [19]:

e SBERT+CS: uses pre-trained SentenceBERT (SBERT) [23],
BERT fine-tuned to project short textual fragments into a
vector space, where semantically similar fragments are close
to each other. SBERT was shown to be superior to BERT and
other neural architectures for the task of assessing semantic
textual similarity [3]. In this case, f;(a,b) = a”b, where a
and b are distributed representations of a and b obtained
using mean-pooling over all output embeddings of SBERT;

o SBERT+KEWER+CS: uses pre-trained SBERT [23] com-
bined with the K-Adapter framework [34] to inject KG-specific
information in the KEWER embeddings into the distributed
representations produced by the pre-trained SBERT. In this
case, fs(a,b) = alb;

o SBERT+KEWER+CoIBERT: uses SBERT with the K-Adapter
for the KEWER embeddings and fs(a,b) = ColBERT (a,b),
which computes semantic similarity as a sum of the dot prod-
ucts between all pairs of the most similar token embeddings
created by SBERT for a and b [15].

3.3 Candidate Answer Entity Ranking with
DRAGON

To address the challenge of effectively dealing with a large number
of sparse and potentially noisy relevance signals in the candidate re-
sponse entity itself and its KG neighborhood, we propose DRAGON,
a learning-to-rank architecture based on graph convolutions and
self-attention. As shown in Figure 2, DRAGON takes as input the
sparse feature vectors containing lexical and semantic relevance
signals for the candidate response entity itself and all nodes in its

“https://rb.gy/dldyo9
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computed only for the nodes e € V,; that correspond to entities (set to 0 for the nodes of other types) and measures similarity
between lexical representations of g; and an entity e (candidate entity response c; or a KG entity that is either subject or object in

computed only for the nodes I € V,; that correspond to literals (set to 0 for the nodes of other types) and measures similarity
between lexical representations of g; and a literal [ in the same KG triplet as the candidate entity response c;

computed only for the nodes p € V,; that correspond to predicates (set to 0 for the nodes of other types) and measures similarity
between lexical representations of g; and a predicate p in the same KG triplet as the candidate entity response c;

computed only for the nodes ¢ € V,; that correspond to categories (set to 0 for the nodes of other types) and measures similarity
between lexical representations of g; and a category c in the same KG triplet as the candidate entity response c;

computed for all nodes n € Vc; and measures similarity between lexical representations of r;_1, the response in the preceding

computed for all nodes n € V;; and measures similarity between lexical representations of r;_», the response two dialog turns

computed only for the nodes e € V; that correspond to entities (set to 0 for the nodes of other types) and measures semantic
similarity between distributed representations of g; and an entity e (candidate entity response c; or a KG entity that is either

computed only for the nodes I € V,; that correspond to literals (set to 0 for the nodes of other types) and measures semantic
similarity between distributed representations of q; and a literal I in the same KG triplet as candidate entity response c;

computed only for the nodes p € V.; that correspond to predicates (set to 0 for the nodes of other types) and measures semantic
similarity between distributed representations of g; and a predicate p in the same KG triplet as the candidate entity response c;

computed only for the nodes ¢ € V.. that correspond to categories (set to 0 for the nodes of other types) and measures semantic
similarity between distributed representations of g; and a category c in the same KG triplet as the candidate entity response c;

computed for all nodes n € V; and measures semantic similarity between distributed representations of r;_1, the response in the

computed for all nodes n € V; and measures semantic similarity between distributed representations of r;_», the response two
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Feature ..
Feature . Feature description
function
ent,, fw(qise)
the same KG triplet as c;)

]-itw fw (Qi, l)
pred,, fw (qi.p)
caty  fw(qic)

1 )
respy fw (ri-1,m) dialog turn, and n

-2 .
respy;’ fw (ri-z,n) ago, and n
ents fs (qi.e)

subject or object in the same KG triplet as c¢;)

]-its f; (qia l)
preds  fs (qi,p)
cats fs (qi,c)

1 )
resps” fs (ri-1,m) preceding dialog turn, and n
resp;? fs (ri—z,n)

dialog turns ago, and n

Table 1: Semantic and lexical similarity features associated with candidate answer entities and the nodes in their sub-graphs
that capture relevance signals used by DRAGON for ranking candidate answer entities.

sub-graph and aggregates these vectors into a candidate entity rank-
ing score with 3 main components: 1) feature aggregation layers;
2) multi-head self-attention layer; and 3) candidate entity scoring
layer; as discussed below.

3.3.1 Feature Aggregation Layers. The use of graph convolutions
for aggregation of relevance signals in KGs and, more specifically,
for aggregation of the candidate answer entity’s relevance feature
vector with the feature vectors in its local KG neighborhood is
one of the key innovations of the proposed method. To this end,
DRAGON includes graph convolution layers, which propagate rel-
evance signals from the feature vectors in the neighboring nodes
and combine them with the relevance features of each candidate
response entity to enrich them contextually. Unlike the typical
applications of GCNs [36] to learn from scratch the distributed
representations of graph nodes based on both graph topology and
text associated with each node, the graph convolution layers in
DRAGON operate on the pre-computed relevance feature vectors,
utilizing the message-passing and noise-filtering mechanisms of
GCNs to smooth and enrich the relevance features of the candidate
answer entity with the most important relevance signals from its
KG neighborhood. The key intuitions behind this innovative use of
GCNis are threefold. First, after aggregation with the feature vectors
of the neighboring nodes, the message-passing capabilities of GCNs

ensure that the vectors associated with relevant response entities
incorporate more relevance signals than the vectors associated
with irrelevant entities. Second, since relevance signals capture the
similarity of the dialog context (i.e., current query and preceding
answers) not only with the candidate response entity, but also with
the KG components in its immediate neighborhood, the message-
passing mechanism of GCNs would propagate the relevance signals
from the KG neighborhood of relevant candidate response entities
when the relevance signals in their own feature vectors are not
strong enough to rank them at the top (e.g. due to indirect and
descriptive nature of a current-turn query or dependencies on pre-
vious responses in the dialog). Third, the noise-filtering capabilities
of GCNs enable DRAGON to handle a large number of relevance
signals, some of which may be spurious, thereby allowing it to be
effective for complex and verbose queries.

Formally, given G.; and the matrix H of feature vectors for all
nodes in G¢;, each graph convolution layer in DRAGON iteratively
updates H by propagating feature vectors around G; and integrat-
ing the feature vectors of each node with those of its neighbors:

H =5 (ﬁ‘%Af)‘%H”)W“)) (5)

where A = A +1is the adjacency matrix of G, ., with added self-
loops, D is the diagonal node degree matrix of A, H is the matrix



Conversational Entity Retrieval from a KG using Graph Convolutions and Self-Attention

of node relevance vectors prior to the /th graph convolution layer
(with H(®) corresponding to the matrix with the original feature
vectors), W(!) is a trainable convolution layer-specific weight ma-
trix that can be viewed as a relevance signal filter, and §(-) denotes
a non-linear activation function.

3.3.2  Multi-Head Attention Layer. After aggregation of the rele-
vance feature vectors with graph convolution layers based on the
KG structure, DRAGON uses multi-head self-attention [30] to fur-
ther enrich the relevance feature vectors associated with the nodes
in the candidate entity sub-graph based on their similarity to the
feature vectors associated with other nodes in the same sub-graph.
Specifically, the node feature matrix H is mapped onto query (Q),
key (K), and value (V) using learnable linear projections:

Q= WQH) K=WkH, V=WyH

The attention weights are computed via a scaled dot-product
attention:

T
A = softmax (Q\E ) s

where d is a scaling factor. The updated representation of relevance
vectors is obtained as:
H=Av.

3.3.3 Candidate Entity Scoring Layer. The final ranking score for
the candidate response entity is computed by passing its updated
relevance vector through a fully connected layer with sigmoid
activation:
s(cj) = O’(WH(C],’.) +b)

where I:I(Cj,,) is the updated relevance vector corresponding to cj,
w and b are trainable weight vector and bias, respectively. The
candidate response entity c; is then ranked based on its score s(c;).

3.3.4 Loss Function. DRAGON was trained based on a list-wise
ranking loss from [40] that minimizes the Kullback-Leibler diver-
gence:
L = KL(softmax(s)||y) - ar

between a distribution over the predicted candidate entity scores
s and a ground-truth one-hot distribution over entity relevance
labels y and a rank-based penalty a,, which is proportional to the
rank deviation of the correct answer and increases the loss when
the gold candidate is ranked lower.

4 Experiments

4.1 Baselines

4.1.1 NACER. NACER [39] is a simple, but strong feature-based
learning-to-rank neural architecture for CER-KG. We use the re-
sults of NACER’s best-performing setup from [39], which utilizes
BERT with the KEWER-based K-Adapter as the query encoder and
the additive interaction function without parameter sharing for
semantic similarity scoring.

4.1.2 ColBERT. Contextualized Late Interaction over BERT (Col-
BERT) [15] is a strong late-interaction method for dense retrieval
that encodes a query and document independently with BERT and
computes their relevance score as a sum of the maximum pair-wise
token-level similarities. To adapt ColBERT to CER-KG, we treat
candidate entity names as documents.
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4.1.3 LlLaMa. Two pre-trained foundation large language mod-
els (LLMs) from the LLaMA-v3 family [11] with 8 (LLaMa3-8b)
and 70 billion (LLaMa3-70b) parameters with a zero-shot prompt
describing the retrieval task.

4.1.4 SEE+MonoBERT. Similarity-based Early Exit (SEE) [2] is an
approach to neural re-ranking that improves the run-time effi-
ciency of MonoBERT [21] with a non-trainable early-exit mecha-
nism. MonoBERT is a cross-encoder re-ranking architecture that
feeds both query and document (candidate entity name, in the
case of CER-KG) into the same BERT model thereby computing
the relevance score based on all interactions between their tokens.
SEE+MonoBERT-PT and SEE+MonoBERT-FT use the pre-trained
and fine-tuned (on the training set of QBLink-KG) MonoBERT,
respectively.

4.2 Configuration of DRAGON

The optimal configuration of DRAGON in terms of the number of
graph convolution layers and self-attention heads was determined
using the training and validation splits of QBLink-KG by varying
these parameters while holding all others fixed.

Figure 3 illustrates the effect of varying the number of graph con-
volution layers on the retrieval accuracy of DRAGON. As follows
from this figure, adding a second graph convolution layer yields
pronounced improvement in Hits@1, although the improvement
in Hits@10 is notably smaller. Adding a third layer results in an
additional marginal increase in Hits@10, which comes at the ex-
pense of a moderate reduction in Hits@1. Addition of more graph
convolution layers decreases both Hits@1 and Hits@10.

Figure 4 illustrates the impact of the number of self-attention
heads on the retrieval accuracy of DRAGON. Moving from no self-
attention layer to a self-attention layer with 1 through 8 heads
steadily improves both retrieval metrics, with 8 heads providing
the optimal balance between them, while expanding to 16 heads
leads to a decrease in both metrics, indicating diminishing returns
from over-attention.

4.3 Results

4.3.1 Retrieval Accuracy. Table 2 compares the retrieval accuracy
in terms of Hits@1, Recall@1 (R@1), Hits@10, Recall@10 (R@10),
and mean reciprocal rank (MRR) of various combinations of the
optimal configuration of DRAGON with four different methods
for measuring semantic similarity and two types of neural graph
aggregator for the relevance feature vectors against the baselines.
Several key conclusions can be drawn from the results in this table.

First, DRAGON consistently outperforms all baselines, includ-
ing SEE+MonoBERT-PT and demonstrates retrieval accuracy com-
parable to SEE+MonoBERT-FT, a state-of-the-art cross-encoder
architecture with substantially greater capacity (109,483,778 train-
able parameters versus 7,537 parameters of the best-performing
configuration of DRAGON). Furthermore, although the fine-tuned
MonoBERT with the early exit mechanism achieves strong perfor-
mance across all retrieval metrics, the same model without fine-
tuning on the target benchmark performs very poorly, attaining
significantly lower retrieval accuracy than all configurations of
DRAGON and all of the baselines. This result indicates that effec-
tive use of cross-encoders for CER-KG heavily relies on time- and
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Table 2: Retrieval accuracy of the DRAGON variants and the baselines on the test set of QBLink-KG. Statistical significance of
the difference with NACER, ColBERT, and DRAGON using SBERT+KEWER+ColBERT for semantic similarity computation
based on the two-tailed paired Student’s ¢-test with p = 0.05 is indicated by T, ¥ and *, respectively.

Method fs(a,b) Graph model Hits@1 R@1 Hits@10 R@10 MRR
NACER - - 1121 0.6665 1602 0.9524 0.7575
ColBERT - - 1099 0.6534 1267 0.7533 0.7033
LLaMa3-70b - - 1036 0.6159 - - -
LLaMa3-8b - - 664 0.3948 - - -
DRAGON SBERT+CS GCN 779 0.4631 1506 0.8954 0.5399
DRAGON BERT+KEWER+CS GCN 870 0.5172 1508 0.8966 0.6257
DRAGON SBERT+KEWER+ColBERT GCN 11745 0.6980% 1347% 0.8008%  0.7279*
DRAGON SBERT+KEWER+CS GCN 12617% 0749778 1639T*  0.9744TF%  0.80217*
DRAGON SBERT+KEWER+CS GAT 908 0.5398 1590 0.9453 0.6177
DRAGON* SBERT+KEWER+CS GCN 1163 0.6914 1405 0.8353 0.7213
SEE+MonoBERT-PT - - 293 0.1742 1363 0.8103 0.3303
SEE+MonoBERT-FT - - 1285 0.7640 1643 0.9768 0.8061
Table 3: Retrieval accuracy of DRAGON using different types of relevance features.

Method (Graph model) fs(a,b) Features Hits@1 R@1 Hits@10 R@10 MRR
DRAGON (GCN) - Lexical 443 0.2634 1427 0.8484  0.3937
DRAGON (GCN) SBERT+KEWER+CS Semantic 660 0.3924 1401 0.8329  0.4795
DRAGON (GCN) SBERT+KEWER+CS Semantic+Lexical 1261 0.7497 1639 0.9744 0.8021

resource-intensive fine-tuning. Moreover, the negligible gain of
cross-encoders over DRAGON in retrieval accuracy also comes
with a significantly higher computational cost during inference.
On dual Nvidia H100 NVL GPUs, DRAGON scores each candidate
entity in QBLink-KG in approximately 0.007 seconds per query,
while MonoBERT with SEE in about 0.03 seconds (4x slower). This
highlights the trade-off between effectiveness and efficiency of CER-
KG models, and demonstrates that DRAGON achieves competitive
retrieval performance with substantially lower inference latency
and model complexity. While NACER (an even smaller model than
DRAGON) yields Hits@1 of 1121 and MRR of 0.7575, and ColBERT
achieves 1099 and 0.7033, respectively, the best variant of DRAGON
using a combination of graph convolution for feature vector ag-
gregation and SBERT with KEWER adapter for semantic similarity
computation attains Hits@1 of 1261 and MRR of 0.8021, correspond-
ing to the relative improvements of 12.5% and 5.9% in Hits@1 and
MRR, respectively, further highlighting the optimal combination of
efficiency and effectiveness of the pipelines for CER-KG that aggre-
gate semantic and lexical signals via graph convolution and refine
them with self-attention. The lower retrieval accuracy (Hits@1 and
Hits@10 drop to 1163 and 1405, respectively) of DRAGON*, the
variant of DRAGON in which self-attention precede graph convo-
lution layers, indicates that the order of graph convolution and
attention layers plays an important role in such pipelines. Revers-
ing it leads to decreased retrieval accuracy, which we attribute
to premature aggregation of noisy relevance signals. Additionally,
the zero-shot prompting of LLaMA3-70b achieves Hits@1 of 1036,
significantly outperforming the smaller 8B variant, but remaining

below the ColBERT’s 1099. This result highlights that, while foun-
dation LLMs capture some aspects of challenging IR tasks, such as
CER-KG, in a zero-shot setting, they fall short not only of much
smaller task-specific architectures, but also of both late-interaction
and cross-encoder models.

1000

Hits@1
Hits@10

1 2 3 a 5

Figure 3: Impact of the number of graph convolution layers
on retrieval accuracy of DRAGON.

Second, the choice of neural model for relevance signal aggre-
gation significantly influences retrieval performance. In particular,
DRAGON with SBERT and KEWER adapter for semantic similar-
ity computation achieved Hits@1 of 908 and MRR of 0.6177 when
using Graph Attention Networks (GAT) [32] for relevance signal
aggregation, whereas substituting GAT with graph convolutions
raises Hits@1 by nearly 39% and MRR by almost 30%. When inves-
tigating the reason behind this gap, we found that the immediate
KG neighborhood of a candidate response entity typically contains
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Figure 4: Impact of the number of self-attention heads on
retrieval accuracy of DRAGON.

both important and noisy nodes. GAT’s learned attention weights
can over-emphasize irrelevant neighbors, thereby degrading the
quality of the aggregated relevance vectors [38]. In contrast, more
flexible aggregation leveraging noise filters built into graph convo-
lutions effectively attenuates distracting and unimportant relevance
signals from the immediate KG neighborhood of the candidate an-
swer entities, even when the signal-to-noise ratio is small, which is
typical of verbose queries and a conversational setting.

Third, combining SBERT with the K-Adapter framework to in-
ject KG-specific information in KEWER embeddings into semantic
relevance computation yields greater performance gains than us-
ing SBERT alone. Specifically, DRAGON using SBERT only attains
Hits@1 of 779 and MRR of 0.5399, whereas the addition of KEWER
increases Hits@1 to 1261 and MRR to 0.8021. At the same time,
using ColBERT-style approach to computing semantic similarity via
aggregation of maximum token-level similarity scores in conjunc-
tion with KEWER embeddings achieves Hits@1 of 1174 and MRR
of 0.7279, trailing the combination of SBERT with KEWER. Unlike
NACER, which also uses BERT+KEWER encoder, but trades fine-
grained control over feature aggregation for learnable semantic fea-
ture functions and simpler neural architecture, DRAGON relies on
a more sophisticated architecture leveraging simpler non-learnable
semantic similarity functions. This design makes DRAGON more de-
pendent on the quality of the input embedding space for computing
semantic similarity, thus limiting BERT+KEWER+CS’s effectiveness
due to BERT’s suboptimal alignment with semantic similarity-based
distance metrics. In contrast, SBERT+KEWER+CS leverages an em-
bedding space better aligned for computing semantic features with
cosine similarity [23], leading to its superior performance even
without learnable functions for relevance feature computation.

4.3.2  Ablation Studies. We conducted an ablation study on the
best-performing configuration of DRAGON to measure the rela-
tive contribution of graph convolution and self-attention layers
to its performance. Figure 5 illustrates Hits@1 and Hits@10 dur-
ing this experiment. Specifically, we evaluated three variants of
DRAGON. First, we examined whether the candidate answer enti-
ties selection and subgraph pruning method is effective at pruning
unrelated nodes while preserving relevant candidate entities. To
this end, we compare the performance of DRAGON with the con-
figuration in which the node pruning step is omitted (denoted
DRAGON_w/o0-p). Comparing DRAGON_w/o-p with DRAGON
shows that pruning contributes to better performance in terms
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Figure 5: Impact of removing different components of
DRAGON on its retrieval accuracy.

of Hits@1 and Hits@10. Examination of the retrieval accuracy
of DRAGON_w/o0-a and DRAGON_w/o-gcn, the models ablating
multi-head attention and replacing graph convolution with simple
averaging of the relevance feature vectors, respectively, reveals
decreases in Hits@10 and especially in Hits@1 in both cases.

To quantify the relative importance of semantic versus lexical
similarity signals in DRAGON, Table 3 reports Hits@1 and MRR
when removing either type of features. Using only semantic simi-
larity features causes Hits@1 to fall from 1261 to 660 (-47.7%) and
MRR to fall from 0.8021 to 0.4795 (-40.2%), while using only lexical
features yields Hits@1 of 443 (—64.9%) and MRR of 0.3937 (-50.1%).
Although semantic features contribute more heavily to DRAGON’s
retrieval effectiveness, both feature types are critically important.

5 Conclusion

In this paper, we present a novel approach for conversational entity
retrieval from a knowledge graph, which first constructs and prunes
a sub-graph for each candidate response entity, then computes 12-
dimensional sparse vectors of semantic and lexical relevance fea-
tures for each node in this sub-graph and aggregates, enriches and
transforms those vectors into the candidate response entity ranking
score with a novel learning-to-rank neural architecture comprising
graph convolution and self-attention layers. Experiments demon-
strate that the proposed approach performs comparably to a much
larger cross-encoder model and yields significant gains in retrieval
accuracy over the previously proposed approach for CER-KG and a
late-interaction approach to dense retrieval. We also experiment
with different methods for computing semantic similarity based on
distributed representations of KG components, query and dialog
context and feature aggregation to determine the best configuration
of the proposed approach. The proposed approach is not specific to
DBpedia and can be easily adapted to other KGs, such as Wikidata.
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