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ABSTRACT

Accurate projection of terms in free-text queries onto struc-
tured entity representations is one of the fundamental prob-
lems in entity retrieval from knowledge graph. In this pa-
per, we demonstrate that existing retrieval models for ad-hoc
structured and unstructured document retrieval fall short of
addressing this problem, due to their rigid assumptions. Ac-
cording to these assumptions, either all query concepts of the
same type (unigrams and bigrams) are projected onto the
fields of entity representations with identical weights or such
projection is determined based only on one simple statistic,
which makes it sensitive to data sparsity. To address this
issue, we propose the Parametrized Fielded Sequential De-
pendence Model (PFSDM) and the Parametrized Fielded
Full Dependence Model (PFFDM), two novel models for en-
tity retrieval from knowledge graphs, which infer the user’s
intent behind each individual query concept by dynamically
estimating its projection onto the fields of structured entity
representations based on a small number of statistical and
linguistic features. Experimental results obtained on several
publicly available benchmarks indicate that PFSDM and
PFFDM consistently outperform state-of-the-art retrieval
models for the task of entity retrieval from knowledge graph.
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1. INTRODUCTION
Recent studies [16, 22] indicate that more than 75% of

queries issued to Web search systems aim at finding infor-
mation about entities, which could be material objects or
concepts that exist in the real world or fiction (e.g. people,
products, scientific papers, colors). Most common informa-
tion needs underlying this type of queries include finding a
certain entity (e.g. “Einstein relativity theory”), a particu-
lar attribute or property of an entity (e.g. “Who founded
Intel?”) or a list of entities satisfying a certain criteria (e.g.
“Formula 1 drivers that won the Monaco Grand Prix”). Such
information needs can be efficiently addressed by presenting
the target entity or a list of entities, either directly as search
results or in addition to the ranked list of documents. This
scenario gives rise to the problem of ad-hoc entity retrieval
from knowledge graph, when the output of retrieval models
is a list of entities given their (potentially verbose) textual
description.
Recent successes in the development of Web information

extraction methods have resulted in the emergence of a num-
ber of large-scale publicly available and proprietary knowl-
edge repositories, such as DBpedia1, Freebase2, Google’s
Knowledge Graph and Microsoft’s Satori. All these reposi-
tories adopt a simple knowledge representation model based
on subject-predicate-object triples that can be conceptual-
ized as a directed labeled multi-graph (commonly referred
to as a knowledge graph), in which the nodes correspond to
entities and the edges denote typed relations between enti-
ties. This model makes knowledge graphs a natural choice
for addressing different types of entity-centric information
needs. However, since the structure of knowledge graphs
has been optimized for automated reasoning and answering
structured graph pattern queries, finding entities in knowl-
edge graphs that conceptually match unstructured free-text
queries presents certain challenges to existing retrieval mo-
dels.
First, since entities in knowledge graphs are designated

only by an identifier (e.g. machine ID /m/0jcx, in the case
of Freebase, or URI http://dbpedia.org/page/Albert Einstein,

1http://dbpedia.org
2http://freebase.com



in the case of DBpedia), there is no notion of document in
this retrieval scenario. A simple workaround for this issue
used in recent work is to aggregate the objects and pred-
icates in all the triples, which include each distinct entity
as a subject, into the fields of a structured document for
that entity. Such aggregation can be done by predicate type
[21], according to the importance weights manually assigned
to predicates [6], based on a flat structure with fixed num-
ber of fields (e.g. title and content [19] or entity name, at-
tributes, categories, similar and related entity names [33])
or a two-level hierarchy, in which the first level corresponds
to predicate types, while the second level corresponds to in-
dividual predicates [18]. Accurately matching unstructured
keyword queries with such structured entity representations,
however, is another fundamental theoretical problem, which
has received much less research attention.
In particular, existing retrieval models are based on a set

of rigid assumptions, which limit their effectiveness for re-
trieval of structured entity documents. On one hand, re-
trieval models incorporating term dependencies, such as Se-
quential Dependence Model [17] (which allows to assign dif-
ferent importance weights to matching query concepts of dif-
ferent type), Weighted Sequential Dependence Model (WSDM)
[4] (which estimates the importance of each matching query
concept individually) and retrieval model based on copulas
[10] disregard entity document structure by considering the
matches of the same query concept in different fields of en-
tity documents as equally important. On the other hand,
although existing models for ad-hoc structured document
retrieval, such as the Mixture of Language Models (MLM)
[20] and BM25F [23], factor in document structure when de-
termining the degree of relevance of queries to documents,
they do not take into account term dependencies (i.e. are
agnostic to bigram query concepts). Furthermore, these mo-
dels calculate the retrieval score of a structured document
as a sum of the matching scores of each query term in a
linear combination of the language models (LMs) for each
document field. As a result, the field weights in this lin-
ear combination, which effectively determine the projection
of query terms onto document fields, are the same for all
query terms. Although the recently proposed Fielded Se-
quential Dependence Model (FSDM) [33] partially addressed
this limitation by allowing different importance weights to
the matches of a query concept in different fields of struc-
tured entity documents, such parametrization still lacks flex-
ibility, as those weights are the same for all query concepts of
the same type (unigrams, ordered and unordered bigrams).
This can create a problem, which is illustrated by an ex-
ample query “capitals in Europe which were host cities of
summer Olympic games”. First, contrary to the assumption
of FSDM, query concepts of the same type in this query
should be projected onto different fields of relevant entity
documents (e.g. “capitals” should be mapped onto the cate-
gories field, while “Europe” should be mapped onto the at-
tributes field). Incorrect projection of any query concept
(e.g. mapping “Europe” and “Olympic games” to the entity
names field) is likely to substantially degrade the accuracy of
retrieval results for this query. Probabilistic Retrieval Model
for Semistructured Data (PRMS) [14] is a unigram bag-of-
words model for ad-hoc structured document retrieval that
learns a simple statistical relationship between the intended
mapping of terms in free-text queries and their frequency in
different document fields. Robust estimation of this relation-

ship, however, requires query terms to have a non-uniform
distribution across document fields and is negatively affected
by data sparsity, particularly in the case of entity represen-
tations with a large number of fields. As a result, PRMS
has inferior performance on entity retrieval tasks not only
relative to FSDM [33], but also to both MLM and BM25F
[2, 33].
To overcome the limitations of existing retrieval models,

we propose the Parametrized Fielded Sequential Dependence
Model (PFSDM) and the Parametrized Fielded Full Depen-
dence Model (PFFDM), two novel feature-based retrieval
models, which infer the user’s intent behind each individual
query concept (unigram or bigram) by dynamically estimat-
ing its probabilistic mapping onto the fields of structured en-
tity representations using a small number of statistical and
linguistic features. We also provide a learning-to-rank algo-
rithm to learn the weights of these features that maximize
the target retrieval metric from the training data. The key
contributions of this work are as follows:

1. We proposed PFSDM and PFFDM, two novel feature-
based models for structured document retrieval, which ac-
count for sequential and full term dependencies as well as
provide flexible parametrization allowing to dynamically
project each query concept onto document fields. To the
best of our knowledge, there are no previous studies of
feature-based models for structured document retrieval,
in general, and ad-hoc entity retrieval from knowledge
graph, in particular;

2. We propose a set of statistical and linguistic features of
query concepts that enable their accurate projection onto
the fields of structured entity documents;

3. We experimentally demonstrate that, for the task of ad-
hoc entity retrieval from knowledge graph, dynamic pro-
jection of query concepts onto entity representations is
more effective than dynamic estimation of their impor-
tance. We also found out that retrieval models accounting
for all dependencies between query terms provide more ac-
curate retrieval results for this task than the models that
account only for sequential dependencies.

The rest of this paper is organized as follows. Section 2
provides a brief overview of previous research along the di-
rections relevant to the present work. Ranking functions
of PFSDM and PFFDM, features to estimate the mapping
of query concepts onto the fields of entity documents along
with the method to learn the weights of those features are
presented in Section 3. Experimental results are reported
and analyzed in Section 4, while Section 5 concludes the
paper and outlines the directions for future work.

2. RELATED WORK
In this section, we provide an overview of the recent work

in ad-hoc entity retrieval from knowledge graph as well as
term dependence and feature-based retrieval models, the
three research directions most closely related to this work.
Ad-hoc Entity Retrieval from Knowledge Graph.

Every information access task involving knowledge graphs
requires finding entities matching a keyword query, either as
an intermediate step or a final goal. Entity retrieval meth-
ods are typically designed to address one particular entity-
centric information need, such as entity search [29, 32, 33],
list search [7] or entity-based question answering [26, 31],
and consist of two stages. Entities retrieved in the first stage



of those methods using a standard retrieval model, such as
BM25 [2, 29], BM25F [6, 11, 29] or MLM [18, 32], are re-
ranked or expanded in the second stage with their immediate
neighbors in the knowledge graph, which can be obtained us-
ing SPARQL queries [29] or through random walk [24].
In particular, Tonon et al. [29] proposed a hybrid method

combining IR and structured graph search that starts by re-
trieving an initial set of entities using BM25 retrieval model
and then extends it using SPARQL queries with the enti-
ties that are directly related to the ones in the initial search
results. Zhiltsov and Agichtein [32] proposed a learning-to-
rank method for re-ranking the results of MLM using query
term and structural entity similarity features calculated in la-
tent space. The SemSets method [7] proposed for entity list
search utilizes the relevance of entities to automatically con-
structed categories (i.e. semantic sets) measured according
to structural and textual similarity. This approach combines
a basic TF-IDF retrieval model with spreading activation
over the link structure of a knowledge graph and evaluation
of membership in semantic sets. Sawant and Chakrabarti
[25] proposed a learning-to-rank method for handling Web
queries aimed at finding entities that belong to a particular
category. Several approaches that translate free-text ques-
tions into structured SPARQL queries have been proposed
for question answering over linked data [26, 31]. The pro-
posed retrieval models can be leveraged in the first stage
of the above methods to improve their overall performance.
Models designed specifically for ad-hoc entity retrieval can
also be leveraged to obtain a set of entities related to a key-
word query (a process known as entity linking [12]), which is
an important step for the methods utilizing knowledge bases
for query expansion in ad-hoc document retrieval [9, 15, 30].
Several entity representation schemes, in which the objects

from RDF triples involving an entity are grouped into the
fields of a structured entity document based on the predi-
cates in those triples, have also been proposed [6, 18, 19]. In
[6], objects are grouped into three fields based on manually
designated predicate type (important, neutral, and unim-
portant). A simple scheme, in which the entities are rep-
resented as documents with two fields (title and content)
was proposed in [19]. Experimental comparison of a struc-
tured entity representation scheme based on four fields with
an unstructured and more complicated hierarchical scheme
indicated superior performance of a simple structured repre-
sentation [18].
Term Dependence and Feature-based Retrieval Mo-

dels. Markov Random Fields (MRF) based retrieval frame-
work [17], proposed by Metzler and Croft, provided a the-
oretical foundation for incorporating term dependencies (in
the form of query bigrams and unordered two-word phrases)
into retrieval models. Sequential Dependence Model (SDM),
which only considers two-word sequences of query terms, and
Full Dependence Model (FDM), which considers all possible
two-word combinations of query terms, are the two most
popular variants of the MRF retrieval models for ad-hoc
document retrieval. Subsequent work along this direction
[1, 8] demonstrated strong positive effect of accounting for
query term dependencies and proximity on both ad-hoc and
Web document retrieval.

SDM was later extended into WSDM by Bendersky et al.
[4]. WSDM estimates the relative importance of query con-
cepts as a linear combination of statistical features based on
the frequency of occurrence of these concepts in the collec-

tion and external resources. Superior retrieval performance
of different variants of WSDM for ad-hoc document retrieval
has been demonstrated through extensive experimental eval-
uation in [13]. The utility of linguistic analysis for accurate
processing of verbose queries in ad-hoc document retrieval
has been demonstrated in [3]. While feature-based retrieval
models have been shown to be effective for weighting con-
cepts in verbose queries [4, 5], this work examines their ef-
fectiveness for ad-hoc entity retrieval from knowledge graph.

3. APPROACH
In this section, we introduce the ranking functions of Pa-

rameterized Fielded Sequential Dependence (PFSDM) and
the Parameterized Fielded Full Dependence (PFFDM) re-
trieval models, the features used by these models to deter-
mine the projection of query concepts onto the fields of entity
documents along with an algorithm to learn the weights of
those features that maximize the target retrieval metric.

3.1 PFSDM and PFFDM
The quality of retrieval results for entity-centric free-text

queries depends on the correctness of inference of implicit
query structure and the accuracy of matching the intent be-
hind each query concept with different aspects of semantics
of relevant entities encoded in their structured representa-
tions. However, the ambiguity of natural language can lead
to many plausible interpretations of a keyword query, which
combined with the requirement to accurately project those
interpretations onto entity representations, makes entity re-
trieval from knowledge graph a challenging IR problem.
PFSDM is a parametric extension of FSDM [33], a re-

cently proposed MRF-based entity retrieval model, which
takes into account both term dependencies and document
structure. FSDM uses the following function to score each
entity profile E with respect to a given keyword query Q:

PΛ(E|Q)
rank
= λT

∑

q∈Q

f̃T (qi, E) +

λO

∑

q∈Q

f̃O(qi, qi+1, E) +

λU

∑

q∈Q

f̃U (qi, qi+1, E) (1)

where f̃T (qi, E), f̃O(qi, qi+1, E), f̃U (qi, qi+1, E) are the po-
tential functions and λT , λO, λU are the relative importance
weights for unigram, ordered and unordered bigram query
concepts, respectively. The potential function for unigrams
is defined as:

f̃T (qi, E) = log
F∑

j=1

w
T
j P (qi|θ

E
j ) = log

F∑

j=1

w
T
j

tfqi,Ej
+ µj

cfqi,j

|Cj |

|Ej |+ µj

where F is the number of fields in structured entity docu-
ments, θEj is the language model of field j in structured doc-
ument for entity E smoothed using the field-specific Dirich-
let prior µj ; |Ej | is the length of field j in E and wT

j are
the field weights for unigrams with the following constraints:∑F

j=1 w
T
j = 1, wT

j ≥ 0; tfqi,Ej
is the frequency of query un-

igram qi in field j of E; cfqi,j is the frequency of qi in the
field j across structured documents for all entities in the col-
lection; |Cj | is the total number of terms in field j across all



entity documents in the collection. The potential function
for ordered bigrams is defined as:

f̃O(qi,i+1, E) = log
F∑

j=1

w
O
j

tf#1(qi,i+1),Ej
+ µj

cf#1(qi,i+1),j

|Cj |

|Ej |+ µj

while the potential function for unordered bigrams is defined
as:

f̃U (qi,i+1, E) = log
F∑

j=1

w
U
j

tf#uwn(qi,i+1),Ej
+ µj

cf#uwn(qi,i+1),j

|Cj |

|Ej |+ µj

where tf#1(qi,i+1),Ej
is the frequency of query bigram qiqi+1

in field j of structured document for entity E, cf#1(qi,i+1),j is
the collection frequency of qiqi+1 in field j and tf#uwn(qi,i+1),Ej

is the number of times the terms qi and qi+1 co-occur within
a window of n words in field j of E, regardless of their order.
In the case of entity descriptions with F fields, FSDM has

3 ∗ F + 3 parameters: F field mapping weights plus λT , λO

and λU . We believe that this parametrization lacks the nec-
essary degrees of freedom, which can potentially limit the
accuracy of this retrieval model. We propose to address this
issue by dynamically estimating wT

qi,j
, the relative contribu-

tion of each individual query unigram qi, and w
O,U
qi,i+1,j

, the

relative contribution of each individual query bigram qi,i+1,
that are matched in field j of structured entity document for
E towards the retrieval score of this entity, as a weighted lin-
ear combination of features:

w
T
qi,j

=
∑

k

α
U
j,kφk(qi, j)

w
O,U
qi,i+1,j

=
∑

k

α
B
j,kφk(qi,i+1, j)

under the following set of constraints:

∑

j

w
T
qi,j

= 1, wT
qi,j
≥ 0, αU

j,k ≥ 0, 0 ≤ φk(qi, j) ≤ 1

∑

j

w
O,U
qi,i+1,j

= 1, wO,U
qi,i+1,j

≥ 0, αB
j,k ≥ 0, 0 ≤ φk(qi,i+1, j) ≤ 1

where φk(qi, j) and φk(qi,i+1, j) are the values of the k-th
non-negative feature function for query unigram qi and bi-
gram qi,i+1 in field j of entity document, respectively. wT

qi,j

and w
O,U
qi,i+1,j

, which can also be considered as posteriors

p(Ej |qi) and p(Ej |qi,i+1), provide probabilistic projection of
query unigram qi and bigram qi,i+1 onto the fields of struc-
tured entity representations (to reduce the number of pa-
rameters in the model, we set wO

qi,i+1,j
= wU

qi,i+1,j
). PFSDM

determines this projection based on multiple features, unlike
PRMS [14], which estimates it directly from the data based
only on the total number of occurrences of a query term in a
particular field across all documents in a collection. Feature-
based estimation of this projection increases its robustness
by overcoming the issues of sparsity and uniform distribu-
tion of occurrences of a query concept across the fields of
entity documents.
PFFDM is different from PFSDM in that it accounts for

all dependencies between the query terms, rather than only
sequential ones.

3.2 Features
The features of different type that we propose to estimate

the projection of a query concept κ onto field j of structured
entity representations are presented in Table 1. In particu-
lar, PFSDM and PFFDM use two types of features: the
ones whose value depends on a query concept and a field of
entity representation and the ones that depend only on a
query concept itself. The intuition behind also having the
latter type of features is that the relation between them and
the fields will be learned in the process of estimating their
weights. For example, one can expect that the weight of
a feature indicating whether a query concept is plural non-
proper noun (NNS) will be higher in the categories field
than in all other fields. For the features that depend on a
field, one can expect that the value of the feature in that
field will indicate the likelihood of a concept to be mapped
to it. Nevertheless, we still learn the weights for these fea-
tures, since: (1) ranges of values for particular features can
be different in different fields and optimizing their weights is
one of the ways to perform adequate scaling (2) contribution
of the feature to the relevance of a field can be different for
different fields.
Two of the features (FP , TS) depend on the collection

statistics of a particular field. During optimization and re-
trieval, these two real-valued features (FP , TS) were rescaled
to [0, 1] range. The FP feature was rescaled logarithmically.
The other group of field mapping features (NNP , NNS,

JJS, NPP , NNO) are binary and take particular values
based on the output of Standford POS Tagger or Parser.
NNP takes positive values for the query concepts that are
proper nouns (e.g. entity names) and, thus, should be mapped
to the names, similar entity names and related entity names
fields. The NNS, NPP , and NNO features take positive
values for the concepts that designate a broader class or type
of the desired entities and, therefore, should be mapped to
the categories field, while the JJS feature should project su-
perlative adjectives to the attributes field. Constant feature
(INT ), which has the same value for all concepts, is known
to be useful for mapping bigrams concepts.

3.3 Parameter estimation
In total, PFSDM and PFFDM have F ∗ U + F ∗ B + 3

parameters (F ∗ U + F ∗ B feature weights as well as λT ,
λO and λU ), where F is the number of fields, while U and
B are the number of field mapping features for unigrams
and bigrams, respectively. An efficient two-stage block opti-
mization algorithm for learning the parameters of PFSDM
and PFFDM with respect to the target retrieval metric is
presented in Algorithm 1.

Algorithm 1 An algorithm for learning the feature weights
in PFSDM and PFFDM.

1: Q← Train queries
2: eU = {1, 0, 0}, eB = {0, 1, 1}
3: for s ∈ {U,B} do
4: λ = es

5: α̂s ← CA(Q,λ)
6: end for
7: λ̂← CA(Q, α̂U , α̂B)

In the first stage (lines 3-6), the algorithm optimizes field
mapping feature weights α separately for unigrams and bi-
grams. During optimization of the feature weights for un-



Table 1: Features to estimate the contribution of query concept κ matched in field j towards the retrieval
score of E. Column CT designates the type of query concept that a feature is used for (UG stands for
unigrams, BG stands for bigrams).

Source Feature Description CT

Collection statistics

FP (κ, j)
Posterior probability P (Ej |w) obtained through Bayesian inversion of
P (w|Ej), as defined in [14].

UG BG

TS(κ, j)
Retrieval score of the top document according to SDM [17], when concept
κ is used as a query and only the jth fields of entity representations are
used as documents.

BG

Stanford POS Tagger3

NNP (κ) Is concept κ a proper noun (singular or plural)? UG

NNS(κ)
Is concept κ a plural non-proper noun? We consider a bigram as plural
when at least one of its terms is plural.

UG BG

JJS(κ) Is concept κ a superlative adjective? UG

Stanford Parser4
NPP (κ) Is concept κ part of a noun phrase? BG

NNO(κ) Is concept κ the only singular non-proper noun in a noun phrase? UG

INT Intercept feature, which has value 1 for all concepts. UG BG

igrams, the feature weights for bigrams are not considered
and vice versa. This is achieved by setting the corresponding
λ weights to 0. After the algorithm is finished with optimiz-
ing the α weights, it proceeds to optimize the weights of
MRF potential functions for different query concept types
(λT , λO and λU in Eq. 1).

4. EXPERIMENTS

4.1 Experimental setup
Experimental results reported in this work were obtained

on a publicly available benchmark developed by Balog and
Neumayer [2], which uses DBpedia as the knowledge graph.
For fair comparison, we used the same five field entity rep-
resentation scheme and the same query sets as in [33] (Sem-
Search ES consisting primarily of named entity queries, List-
Search consisting primarily of entity list search queries, QALD-
2 consisting of entity-focused natural language questions,
and INEX-LD containing a mix of entity-centric queries of
different type). We pre-processed both entity documents
and queries by applying the Krovetz stemmer and removing
the stopwords in the INQUERY stopword list.

4.2 Feature analysis
First, to evaluate the effectiveness of the proposed fea-

tures, we performed an exploratory analysis of distributions
of their values (for the features whose values depend on doc-
ument fields) or frequencies of their occurrences (for the
features whose values are independent of document fields)
in different fields of entity representations. Specifically, we
manually annotated each concept in all queries according
to the user’s intent with respect to a particular aspect of
target entities as an attribute concept, entity concept, re-
lation concept, or type concept. Our intuition is that the
attribute query concepts (e.g. when a user is searching for
an entity attribute rather than an entity itself) should be

3http://nlp.stanford.edu/software/tagger.html
4http://nlp.stanford.edu/software/lex-parser.html

frequently occurring or have relatively higher feature val-
ues in the attributes field of entity representations. Query
terms or phrases marked as entity concepts (e.g. when a
user is searching for a particular named entity) should be
primarily occurring in the names and similar entity names
fields, while the relation concepts (when a query is about a
relation between the two named entities) should be primar-
ily occurring in the similar entity names and related entity
names fields of entity representations. Finally, query con-
cepts marked as type (when a query is about several entities
with the same type) should be frequently occurring or have
relatively greater feature values in the categories field.
Figure 1 visualizes the distributions of values of the Field

Probability (FP ) and Top Score (TS) features for the query
concepts of different types in different fields of structured en-
tity representations. As can be observed in Figure 1 (left),
the median values of the FP feature for the query concepts
of type entity in all three entity fields (entity names, simi-
lar entity names and related entity names) are significantly
greater than the median values of the same feature for the
query concepts of the same type in both the attributes and
categories fields. The median values of the FP feature for
the query concepts of type attribute in the attributes and cat-
egories fields are significantly greater than the median values
of the same feature for the query concepts of the same type in
all three entity fields. Furthermore, for the type and relation
query concepts, the median values of the same feature in the
categories and related entity names fields, respectively, are
significantly greater than the median values of this feature
in all other fields. It can also be observed in Figure 1 (right),
that the median values of the TS feature for the query con-
cepts of type entity in the similar entity names and related
entity names fields are significantly greater than the median
values of the same feature for the query concepts of the same
type in all other fields. Furthermore, the median values of
the TS feature for the type and attribute query concepts in
the attributes field are greater than the median values of the
same feature in all other fields.
To formally validate these observations, we conducted sta-

tistical significance tests. In particular, the Kruskal-Wallis
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Figure 1: Boxplots for the distributions of values of real-valued features for the query concepts of different
types in different fields of entity documents.
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Figure 2: Boxplots for the distributions of normalized frequencies of query concepts with negative and positive
feature values in different fields of entity documents.

test [27] indicated that the null hypothesis of the FP and
TS feature values having the same median in different fields
of entity representations for all concept types should be re-
jected (p < 0.05). Following the Kruskal-Wallis test, we
performed a multiple comparison test (kruskalmc), which be-
sides confirming the above empirical observations, indicated
other statistically significant differences in feature values. In
particular, the values of the TS feature for the query con-
cepts of type relation in the related entity names field are
different from its values in the categories and all three en-
tity fields. This test also indicated that for all concept types
the values of the FP feature in all three entity fields (entity
names, similar entity names and related entity names) are
significantly different from the values of the same feature in
both attributes and categories fields, which in turn are sig-
nificantly different from each other for the query concepts of
type relation.
Figure 2 visualizes the distributions of normalized frequen-

cies of query concepts with negative and positive values of
the features that do not depend on a field in different fields

of structured entity representations. Examining the prop-
erties of these distributions for concepts with positive and
negative feature values in the same field as well as across
different fields can give us an intuition about whether the
concepts having positive values for a particular feature are
more likely to occur in certain fields of entity representations
than in the others. This in turn can give us an insight about
whether certain linguistic properties of query concepts are in-
dicative of the user’s intent with respect to the projection of
those concepts onto specific aspects of relevant entities. As
follows from Figure 2, the query concepts that are superla-
tive adjectives (JJS is true) much more frequently occur in
the attributes field and are very likely to designate the at-
tributes of relevant entities; plural non-proper unigrams and
bigrams (NNS is true), bigrams (NPP is true) or singular
non-proper nouns (NNO is true) that are part of a noun
phrase are more likely to represent the categories of rele-
vant entities, while singular or plural proper nouns (NNP

is true) more frequently occur in three entity fields, than
in any other field of entity documents and, thus, typically
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Figure 3: MAP of PFSDM on DBpedia knowledge graph and the benchmark in [2] depending on different
combinations of field mapping features for unigram and bigram query concepts. Dashed red line represents
the performance of FSDM [33].

designate the target entities directly. These observations in-
dicate that entity-centric keyword queries have an implicit
structure, with each element in that structure designating a
particular aspect in multi-fielded representation of relevant
entities.

4.3 Feature effectiveness
To determine the combination of features, which results in

the best performance of PFSDM and PFFDM, we conducted
a feature selection study. First, we determined the combi-
nations of only unigram and only bigram features (using
simplified versions of PFSDM that consider only unigrams
or bigrams, respectively), which result in the best retrieval
performance in terms of MAP (target retrieval metric). In
particular, we identified 6 most effective unigram and 7 most
effective bigram feature sets. Then we evaluated the perfor-
mance of PFSDM using each possible combination of uni-
gram and bigram feature sets to determine the best perform-
ing combined feature set. Retrieval effectiveness of different
feature combinations for PFSDM is illustrated in Figure 3.
As follows from Figure 3, most feature combinations result
in higher MAP than FSDM. PFSDM achieves the highest
MAP of 0.240 in conjunction with FP , NNS, NNP features
for unigram query concepts and TS, NNS, NPP features
for bigram ones. The weights of these features that result in
the highest MAP of PFSDM are presented in Table 3.
From Table 3, it follows that the learned feature weights

are similar to the distribution of frequencies of manually
marked up query concept types across the fields of struc-
tured entity representation.

4.4 Comparison with baselines
Retrieval accuracy of PFSDM and PFFDM using the best

feature combination is compared with that of state-of-the-
art retrieval models for ad-hoc document (SDM [17] and
WSDM [4] with cf and df features) and structured docu-

ment (BM25F [23], PRMS [14], MLM [20] and FSDM [33])
retrieval in Table 2. Parameters of both the proposed re-
trieval models and the baselines have been optimized using
5-fold cross validation (except PRMS, which does not require
optimization).
Several important conclusions can be made based on the

results in Table 2. First, WSDM shows minor improvement
and, on some query sets, is even worse than SDM, which indi-
cates that feature-based query concept importance weight-
ing is less effective for entity retrieval than for document
retrieval. On the other hand, dynamic feature-based estima-
tion of relative importance of matching query concepts in
different fields of entity documents provides significant im-
provement of retrieval accuracy on verbose queries, such as
the ones in QALD-2 query set. Second, the relatively small
difference in performance between PFSDM and FSDM on
SemSearch ES and ListSearch query sets can be explained
by the fact that all concepts in those query sets map to only
a few fields. In particular, most concepts in SemSearch ES
queries map onto the entity field, while most concepts in
ListSearch queries map onto the categories and attributes
fields. In such cases, estimating field mapping degenerates
to estimating relative importance of matching concepts in
a particular field of entity representation, which nullifies
the advantages of PFSDM. We can also observe that tak-
ing into account all dependencies between query terms can
partially mitigate this problem, as evidenced by superior
performance of PFFDM on both ListSearch and INEX-LD
query sets. Third, although it can be seen that PFSDM
achieves improvement over FSDM in terms of MAP, MRR
and NDCG@5 at the expense of decreased P@10, taking
into account all dependencies between the query terms al-
lows PFFDM to achieve consistent improvement over both
FSDM and FFDM in terms of all retrieval metrics.
Table 4 compares the retrieval accuracy of PFSDM and

PFFDM with the same baselines on the knowledge graph



Table 2: Performance of retrieval models on DBpedia knowledge graph and the benchmark in [2]. Relative
improvement over PRMS and FSDM is shown in parenthesis, while “*”and“†” indicate statistically significant
improvement over the same baselines, according to the Fisher’s randomization test (α = 0.05) [28].

SemSearch ES
MAP P@10 MRR NDCG@5

SDM 0.254 (+10.5%) 0.202 (+14.4%) 0.520 (−5.3%) 0.306 (−3.5%)

WSDM 0.246 (+7.2%) 0.201 (+13.5%) 0.507 (−7.7%) 0.298 (−5.9%)

BM25F-tc [2] 0.334 (+45.3%) 0.263 (+48.7%) 0.705 (+28.4%) 0.453 (+42.9%)

PRMS 0.230 0.177 0.549 0.317

MLM 0.320 (+39.3%) 0.250 (+41.3%) 0.680 (+23.9%) 0.423 (+33.3%)
FSDM 0.386 (+68.1%) 0.286 (+61.7%) 0.737 (+34.3%) 0.476 (+50.3%)

PFSDM 0.394∗ (+71.4%/+1.9%) 0.286∗ (+61.7%/0.0%) 0.757∗ (+38.0%/+2.7%) 0.494∗† (+55.9%/+3.7%)

FFDM 0.389∗ (+69.3%/+0.7%) 0.286∗ (+61.7%/0.0%) 0.734∗ (+33.8%/−0.4%) 0.479∗ (+51.3%/+0.6%)

PFFDM 0.380∗ (+65.3%/−1.7%) 0.286∗ (+61.7%/0.0%) 0.739∗ (+34.6%/+0.2%) 0.477∗ (+50.6%/+0.2%)
ListSearch

MAP P@10 MRR NDCG@5

SDM 0.197 (+78.3%) 0.252 (+63.8%) 0.463 (+30.5%) 0.282 (+60.1%)

WSDM 0.194 (+75.4%) 0.257 (+66.7%) 0.457 (+28.8%) 0.280 (+58.7%)
BM25F-tc [2] 0.159 (+43.9%) 0.221 (+43.5%) 0.390 (+9.8%) 0.217 (+23.2%)

PRMS 0.111 0.154 0.355 0.176

MLM 0.190 (+71.7%) 0.252 (+63.8%) 0.439 (+23.5%) 0.280 (+58.5%)

FSDM 0.203 (+83.9%) 0.256 (+66.1%) 0.447 (+25.8%) 0.274 (+55.2%)
PFSDM 0.201∗ (+81.8%/−1.1%) 0.253∗ (+64.4%/−1.0%) 0.443∗ (+24.8%/−0.8%) 0.278∗ (+57.5%/+1.5%)

FFDM 0.226∗† (+104.4%/+11.2%) 0.282∗† (+83.1%/+10.2%) 0.499∗† (+40.6%/+11.7%) 0.313∗† (+77.2%/+14.2%)

PFFDM 0.228∗† (+106.4%/+12.3%) 0.286∗† (+85.9%/+11.9%) 0.487∗ (+37.2%/+9.1%) 0.302∗† (+71.3%/+10.4%)

INEX-LD
MAP P@10 MRR NDCG@5

SDM 0.117 (+83.5%) 0.258 (+77.9%) 0.567 (+38.7%) 0.341 (+57.4%)
WSDM 0.118 (+85.3%) 0.257 (+77.2%) 0.549 (+34.4%) 0.341 (+57.4%)

BM25F-tc [2] 0.117 (+83.0%) 0.249 (+71.7%) 0.559 (+36.7%) 0.341 (+57.4%)

PRMS 0.064 0.145 0.409 0.216
MLM 0.102 (+60.2%) 0.238 (+64.1%) 0.530 (+29.7%) 0.306 (+41.3%)

FSDM 0.111 (+74.4%) 0.263 (+81.4%) 0.546 (+33.7%) 0.322 (+48.7%)
PFSDM 0.116∗ (+81.7%/+4.2%) 0.259∗ (+78.6%/−1.5%) 0.579∗ (+41.5%/+5.9%) 0.341∗ (+57.6%/+6.0%)

FFDM 0.122∗† (+91.3%/+9.7%) 0.273∗ (+88.3%/+3.8%) 0.560∗ (+37.0%/+2.5%) 0.345∗† (+59.5%/+7.3%)

PFFDM 0.121∗† (+89.9%/+8.9%) 0.274∗ (+89.0%/+4.2%) 0.556∗ (+36.0%/+1.8%) 0.343∗ (+58.7%/+6.7%)

QALD-2
MAP P@10 MRR NDCG@5

SDM 0.184 (+52.9%) 0.106 (+35.5%) 0.287 (+52.0%) 0.215 (+46.5%)
WSDM 0.183 (+52.8%) 0.112 (+42.7%) 0.288 (+52.6%) 0.214 (+45.7%)

BM25F-tc [2] 0.107 (−11.1%) 0.062 (−20.9%) 0.158 (−16.0%) 0.117 (−20.6%)

PRMS 0.120 0.079 0.188 0.147
MLM 0.152 (+26.3%) 0.103 (+30.9%) 0.215 (+14.0%) 0.170 (+15.7%)

FSDM 0.195 (+62.7%) 0.136 (+73.6%) 0.283 (+50.0%) 0.229 (+55.7%)
PFSDM 0.218∗† (+81.9%/+11.7%) 0.140∗ (+78.2%/+2.6%) 0.308∗ (+63.2%/+8.8%) 0.253∗† (+72.5%/+10.8%)

FFDM 0.200∗ (+66.5%/+2.3%) 0.139∗ (+76.4%/+1.6%) 0.292∗ (+54.9%/+3.3%) 0.237∗ (+61.6%/+3.8%)
PFFDM 0.219∗† (+82.1%/+11.9%) 0.147∗ (+87.3%/+7.9%) 0.310∗ (+64.2%/+9.5%) 0.267∗† (+81.5%/+16.6%)

All queries
MAP P@10 MRR NDCG@5

SDM 0.192 (+41.5%) 0.198 (+45.0%) 0.449 (+21.3%) 0.281 (+31.5%)
WSDM 0.189 (+39.6%) 0.200 (+46.5%) 0.441 (+19.1%) 0.278 (+30.2%)

BM25F-tc [2] 0.182 (+34.3%) 0.192 (+40.8%) 0.442 (+19.5%) 0.277 (+29.5%)

PRMS 0.136 0.136 0.370 0.214
MLM 0.196 (+44.3%) 0.206 (+50.6%) 0.458 (+23.7%) 0.292 (+36.4%)

FSDM 0.231 (+70.4%) 0.231 (+69.2%) 0.498 (+34.5%) 0.325 (+52.0%)

PFSDM 0.240∗† (+77.1%/+3.9%) 0.231∗ (+68.9%/−0.2%) 0.516∗† (+39.5%/+3.7%) 0.342∗† (+59.9%/+5.2%)

FFDM 0.241∗† (+77.5%/+4.2%) 0.240∗† (+75.7%/+3.8%) 0.515∗† (+39.2%/+3.4%) 0.342∗† (+60.1%/+5.3%)

PFFDM 0.244∗† (+79.9%/+5.6%) 0.244∗† (+78.4%/+5.4%) 0.518∗† (+39.9%/+4.0%) 0.347∗† (+62.5%/+6.9%)

from the 2009 Billion Triple Challenge (BTC-2009). This
knowledge graph consists of 1.14 billion RDF triples and
contains entities from other knowledge bases besides DB-
pedia. For this experiment, we used the queries from the

Entity Search (ES) track of 20105 and 20116 Yahoo! Sem-

5http://km.aifb.kit.edu/ws/semsearch10/
6http://km.aifb.kit.edu/ws/semsearch11/



Table 3: Optimized weights of the best performing features for PFSDM (averaged over all folds).

concept type feature attributes categories names related entity names similar entity names

Unigram

FP 0.147 0.109 0.026 0.020 0.041

NNS 0.110 0.141 0.019 0.023 0.014

NNP 0.116 0.092 0.025 0.060 0.057

Bigram

TS 0.065 0.153 0.029 0.043 0.087

NNS 0.039 0.183 0.028 0.046 0.057

NPP 0.091 0.073 0.000 0.075 0.042

Table 4: Comparison of retrieval models on SemSearch ES queries and BTC-2009 knowledge graph.

MAP P@10 MRR NDCG@5

SDM 0.102 (+4.4%) 0.210 (+6.0%) 0.518 (−4.9%) 0.248 (−8.0%)

WSDM 0.100 (+2.6%) 0.214 (+8.2%) 0.495 (−9.1%) 0.230 (−14.7%)

PRMS 0.098 0.198 0.545 0.269

MLM 0.121 (+23.6%) 0.243 (+22.8%) 0.588 (+8.0%) 0.312 (+16.0%)

FSDM 0.171 (+75.3%) 0.323 (+63.3%) 0.631 (+15.8%) 0.358 (+32.9%)

PFSDM 0.182∗† (+87.0%/+6.7%) 0.335∗ (+69.4%/+3.7%) 0.657∗† (+20.7%/+4.2%) 0.371∗ (+37.8%/+3.7%)

FFDM 0.180∗† (+84.8%/+5.4%) 0.330∗† (+66.9%/+2.2%) 0.647∗ (+18.8%/+2.6%) 0.373∗† (+38.6%/+4.3%)

PFFDM 0.187∗ (+91.8%/+9.4%) 0.342∗† (+72.6%/+5.7%) 0.650∗ (+19.4%/+3.1%) 0.377∗ (+40.2%/+5.5%)
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Figure 4: Topic-level differences in average precision on BTC-2009: a) between PFSDM and FSDM; b)
between PFFDM and FFDM.

Search Challenge and publicly available relevance judgments
for those queries7. We used the same 5-field entity represen-
tation scheme for this knowledge graph, as we did for the DB-
pedia one. As can be seen in Table 4, PFSDM and PFFDM
demonstrate significant and consistent improvement relative
to PRMS, as well as FSDM and FFDM, respectively.
From Figures 4a and 4b, it also follows that parameter-

izing the field importance weights in PFSDM and PFFDM
results in more improved topics and greater magnitude of im-
provements than using static weights in FSDM and FFDM.

4.5 Success/Failure Analysis
Next, we provide a brief qualitative analysis of sample

queries illustrating the strengths and weaknesses of PFSDM
and PFFDM. The ability to map query concepts of the same
type onto different fields of entity documents allows PFSDM
to promote the correct entities for verbose and question
queries. For example, for the query “Who produces Orang-

7https://github.com/nzhiltsov/YSC-relevance-data

ina?”, PFSDM returns the correct result A.G. Barr at the
top, unlike FSDM, which ranks it as the 18th result. For
this query, PFSDM correctly assigns higher weights to the
matches of the query term produce in the attributes (0.49)
and categories (0.41) fields, of the query term Orangina in
the related entity names field (0.55) and of the bigram pro-
duce Orangina in the categories (0.45) field, unlike FSDM,
which uses the same field weighting scheme (0.40 for at-
tributes, 0.20 for categories, 0.30 for related entity names
and 0.10 for similar entity names fields) for all query un-
igrams. The correct field mapping weights for these query
concepts are determined by the FP and NNP features. The
same effect was observed for the query“Who is the governor
of Texas?”. PFSDM promoted Rick Perry, the only correct
answer for this query, from the second to the first position
by boosting the matches of query concepts governor (cap-
tured by the FP and NNP features) and governor Texas
(captured by the TS feature) in the categories field.

Another type of queries with the highest relative MAP



gain of PFSDM over FSDM are list search queries, such as
“Give me a list of all American inventions” (from 0.032 to
0.232), “Tom Hanks movies where he plays a leading role”
(from 0.073 to 0.181) and “Give me all companies in Mu-
nich” (from 0.114 to 0.252). For the first query, PFSDM
promotes the correct entities Aberdeen Chronograph, Lisp
programming language by boosting their matching scores in
the categories field, while FSDM ranks The Heroic Age of
American Invention, a science book for children, as the high-
est entity, by not taking into account the absence of an im-
portant term invention in its categories field.
We also observed that the common causes of PFSDM fail-

ures are assignment of uniform field weights to query con-
cepts and a lack of concept statistics. For example, for the
query“Give me all people that were born in Vienna and died
in Berlin”, PFSDM underestimates the importance of rela-
tively rare concepts Vienna and Berlin, but overestimates
the importance of very popular concepts born and die. The
issue can be addressed by using a minimum support match-
ing strategy or by introducing additional features.

5. CONCLUSION
In this paper, we proposed two novel models for ad-hoc en-

tity retrieval from knowledge graph, which account for term
dependencies and perform feature-based projection of query
concepts onto the fields of entity documents. By demonstrat-
ing the possibility of inferring implicit structure of keyword
queries using linguistic attributes and simple field statistics
of query concepts, the proposed models constitute an impor-
tant step in the evolution of models for structured document
retrieval. We hypothesize that the proposed models can be
effective in other structured information retrieval scenarios,
such as product and social graph search, and leave verifica-
tion of this hypothesis to future work.
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