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Abstract. Recent years have witnessed the emergence of novel models
for ad-hoc entity search in knowledge graphs of varying complexity. Since
these models are based on direct term matching, their accuracy can suffer
from a mismatch between vocabularies used in queries and entity descrip-
tions. Although successful applications of word embeddings and knowl-
edge graph entity embeddings to address the issues of vocabulary mis-
match in ad-hoc document retrieval and knowledge graph noisiness and
incompleteness, respectively, have been reported in recent literature, the
utility of joint word and entity embeddings for entity search in knowledge
graphs has been relatively unexplored. In this paper, we propose Knowl-
edge graph Entity and Word Embedding for Retrieval (KEWER), a novel
method to embed entities and words into the same low-dimensional vec-
tor space, which takes into account a knowledge graph’s local structure
and structural components, such as entities, attributes, and categories,
and is designed specifically for entity search. KEWER is based on random
walks over the knowledge graph and can be considered as a hybrid of word
and network embedding methods. Similar to word embedding methods,
KEWER utilizes contextual co-occurrences as training data, however,
it treats words and entities as different objects. Similar to network em-
bedding methods, KEWER takes into account knowledge graph’s local
structure, however, it also differentiates between structural components.
Experiments on publicly available entity search benchmarks and state-
of-the-art word and joint word and entity embedding methods indicate
that a combination of KEWER and BM25F results in a consistent im-
provement in retrieval accuracy over BM25F alone.

1 Introduction

Entity search is an information retrieval (IR) task aimed at addressing informa-
tion needs focused on abstract or material objects, such as people, organizations,
products and book characters. Such information needs include finding a partic-
ular entity (e.g. “Einstein relativity theory”), an attribute or a property of an
entity (e.g. “Who founded Intel?”), an entity by its property (e.g. “England foot-
ball player highest paid”) or a list of entities matching a description (e.g. “Formula
1 drivers that won the Monaco Grand Prix”) and can be formulated as short or
“telegraphic” keyword queries or natural language questions [2, 17]. Target entity
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or a list of entities for these information needs can be retrieved from a knowledge
graph, such as Wikipedia, DBpedia, Freebase or Wikidata.

In prior research, the problem of entity retrieval from a knowledge graph was
cast into a special case of structured document retrieval [44, 24, 20, 21], database
search [17, 31] or a combination of the two [34, 5]. Such methods take into ac-
count only the directly adjacent structural components of a knowledge graph
(entities, predicates, categories, and literals) when constructing a document for
an entity from a knowledge graph. As a result, a significant amount of potentially
useful information can be lost by not taking into account the local structure of
knowledge graphs or structural components that are separated by more than
one edge in a knowledge graph. For example, the entities Michelangelo and Sis-
tine Chapel are separated by 3 edges in DBpedia. Another drawback of existing
methods is that they only consider entities as points (i.e. entity documents) in
a high-dimensional space, with the number of dimensions equal to vocabulary
size. This can lead to a well-known problem of vocabulary “gap” between queries
and documents for relevant entities. For example, searchers looking for the enti-
ties that are related to the Musée National d’Art Moderne can pose the queries
containing the terms “Beaubourg” or “MNAM”, some or all of which may not
be in the documents corresponding to the relevant entities. In ad-hoc document
retrieval, vocabulary mismatch has been successfully addressed by employing
the methods that create a low-dimensional representation of words and docu-
ments, such as Latent Semantic Indexing [8], Latent Dirichlet Allocation [37],
word2vec [18], and GloVe [25]. Many recently proposed approaches [40, 39, 14,
35] have successfully utilized word embeddings to address vocabulary mismatch
in ad-hoc document IR.

At the same time, to address the issues of graph incompleteness and noisiness,
a number of methods have been proposed for knowledge graph embedding, such
as RESCAL [23], TransE [3], and NTN [32]. These methods represent knowl-
edge graph entities and relations as vectors in the same embedding space with
geometrical constraints that encode the local structure of knowledge graphs. Al-
though these methods have been shown to be effective for the task of knowledge
graph link prediction, the embedding spaces constructed by these methods as
well as network embedding methods, such as DeepWalk [27], LINE [33], and
node2vec [10] do not consider words and, therefore, cannot be utilized in the
tasks that involve both words and entities, such as entity search. However, the
methods to construct joint embedding spaces for both words and en-
tities that are effective for entity search in knowledge graph have not
yet been explored.

To address this issue, we propose Knowledge graph Entity and Word Em-
beddings for Retrieval (KEWER), a novel method to create a low-dimensional
representation of entities and words in the same embedding space that takes
into account both local structure and structural components of knowledge graphs.
KEWER samples random walks over a given knowledge graph and thus can be
considered as a hybrid between word and network embedding methods. Simi-
lar to word embedding methods, KEWER utilizes contextual co-occurrences as
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training data but differentiates between words and entities. Similar to network
embedding methods, KEWER explicitly models the local structure of a knowl-
edge graph, but unlike these methods, it takes into account various structural
components of a knowledge graph, which allows us to jointly model both entities
from the graph, such as DBpedia, and keyword queries.

We perform a series of experiments with KEWER to answer the following
research questions:RQ1: How to learn joint word and entity embeddings that are
effective for entity retrieval from a knowledge graph? RQ2: Which structural
components of a knowledge graph are the most effective when learning joint
entity and word embeddings for entity retrieval? RQ3: How does joint word
and entity embeddings affect the retrieval accuracy of standard term matching
based retrieval models for different types of entity search queries when they
are utilized along with these models? RQ4: How does retrieval accuracy of
the methods using joint word and entity embeddings compare with that of the
methods using only word embeddings?

2 Related work

Entity Search. Entity search approaches can be categorized into the ones
that utilize structured information from knowledge graphs and the ones that
do not. While earlier studies [34, 5, 31] heavily utilized knowledge graph’s struc-
ture during retrieval, more recent studies [21, 20, 44, 24] only use it to construct
fielded entity representations, effectively casting entity search into an instance
of structured document retrieval. Entity similarity information obtained from
entity embeddings was successfully utilized for re-ranking the results of term-
based retrieval models in [43, 13, 16] using a learning-to-rank approach. A pub-
licly available benchmark for entity search based on DBpedia [15] and its more
recent version [12], which provides graded relevance judgments obtained using
crowdsourcing and subsequent conflict resolution by experts, are standard test
collections for evaluating entity search methods.

Word Embeddings in IR. Significant research efforts in the IR commu-
nity were devoted to assessing the utility of word embeddings for different IR
tasks. While the initial and some of the recent works in this area directly uti-
lize word embeddings obtained using the methods such as word2vec, several
word embedding models specifically targeting IR [9, 41, 29] have been recently
proposed. The Dual Embedding Space Model [19] utilizes embedding matrices,
which correspond to the two layers of the CBOW or Skip-gram architectures, to
re-rank retrieval results. Experiments with this model indicate that utilizing IN-
OUT instead of IN-IN similarity between embeddings of a query and document
words allows for better modeling of aboutness of a document with respect to a
query.

Network Embeddings. Network embedding models aim to embed network
nodes into a low-dimensional vector space. A common idea underlying these
methods is the adoption of the embedding methods from language modeling to
sequences obtained using random walks on a given network. DeepWalk [27] is



4 F. Nikolaev and A. Kotov

the first method that is based on this idea. DeepWalk trains the Skip-Gram
architecture on sequences of vertices generated by random walks of specified
length starting from each node in the network. The resulting embeddings can be
used for various classification tasks, such as group labeling in social networks.
Other notable network embedding methods are LINE [33], node2vec [10], and
struc2vec [30].

Knowledge Graph Embeddings. Knowledge graph embeddings are a
popular way to obtain low-dimensional dense representations for entities and
predicates. A widely known TransE model [3] was proposed as a way to greatly
reduce the number of parameters required to train the Structured Embeddings
model [4] by using vector algebra. MEmbER [13] is an extension of GloVe [25] to
learn conceptual spaces consisting of word and entity embeddings, in which the
salient words in a given domain are associated with separating hyperplanes. Sev-
eral studies [36, 38, 45] proposed a hybrid between entity and word embeddings
by employing a loss function, which includes both a TransE-based component
to model relations between entities and a word2vec-based component to model
semantic relations between the words along with the third component, whose
purpose is to align entity and word embeddings obtained by the first two com-
ponents. In [22] authors take a different approach by learning word and entity
embeddings without utilizing relations between entities from a knowledge graph
and instead relying only on an unannotated corpus of text. None of the previ-
ously proposed approaches for learning joint word and entity embedding spaces
were proposed specifically for entity search in a knowledge graph, and thus ignore
important information, such as knowledge graph structural components.

3 Method

The primary goal of the proposed method is to learn joint word and entity
embeddings that are effective for entity retrieval from a knowledge graph. The
proposed method is based on the idea that a knowledge graph consists of key
structural components. Structural components are loosely related to the fields
of entity documents used extensively in knowledge graph entity search [44, 20,
26], but are defined in a more general way as a set of components of a knowledge
graph that are directly or indirectly related to entities.

A given knowledge graph is formally defined as G = {E,R,A,C, S}, where
E = {e1, . . . , e|E|} is a set of entities; R is a set of subject-predicate-object
triples (s, p, o) where s, o ∈ E are entities and p is a predicate; A is a set of
triples (e, p, a) where e ∈ E is an entity, p is a predicate, and a is a textual
attribute that contains words {w1, . . . , wk} from vocabulary V ; C is a set of
entity-category pairs (e, c), c ∈ K; S is a combined set of entity-surface form
(e, s), category-surface form (c, s), and predicate-surface form (p, s) pairs, where
s = {n1, . . . , nk} is a set of word tokens in a surface form. The most commonly
available surface form for an entity or category is its name or label (with k ≈ 3).
Another example of a surface form for an entity is its anchor text. We do not
use long surface forms, such as entity descriptions, in this study. The vocabulary
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of all distinct surface form tokens is denoted as N . We also define the following
three structural components of a knowledge graph: categories (C,) literals
(A), and predicates (P = {p : (s, p, o) ∈ R or (e, p, a) ∈ A}).

3.1 Knowledge graph Entity and Word Embedding for Retrieval

To address RQ1, we propose KEWER, a method to jointly embed knowledge
graph entities and words for entity search that takes into account the local
structure of a knowledge graph, as well as its structural components. KEWER
is based on a neural architecture that utilizes as input a set of sequences of
word tokens and entity URIs produced by the following two-step procedure: (1)
perform random walks over a knowledge graph to generate sequences consist-
ing of structural components of a given knowledge graph (entities, predicates,
attributes, and categories) of specified length t (2) randomly with probability
r replace URIs in sequences resulting from random walks with their respective
surface forms obtained from the same knowledge graph.

3.2 Proposed Method

In our approach, sequences generated from random walks can be viewed as short
descriptions of entities that are accessed by them. For example, a random walk
over DBpedia Pierre_Curie spouse−−−−→ Marie_Curie knownFor−−−−−−→ Radioactivity can be
seen as a short description of Marie Curie, who was the wife of Pierre Curie and
is known for discovering radioactivity. The objective that is used during training
when given a current element from a sequence is to predict its surrounding
context. In our example sequence, if Marie_Curie is the current element, the
model will try to minimize the distance between embeddings of the context
elements Pierre_Curie, spouse, knownFor, Radioactivity and an embedding of
the current entity, Marie_Curie. The resemblance of this objective to the entity
search task, when we need to predict target entity Marie_Curie from the user
query such as “Who is known for her research on radioactivity and was the wife of
Pierre Curie?” is a primary motivation for using random walks over a knowledge
graph in the proposed method.

Random Walks Generation. Formally, the random walks are generated in
the following way: starting from each entity e we generate γ random walks of
length≤ t. Each random walk is independently generated by repeatedly following
directed edges (s, p, o) ∈ R, such that the same node is not visited more than
once during each random walk. If the predicates component is used, we add
predicate-object pair (p, o) to the walk sequence, otherwise, we only add an
object o. The walk procedure terminates when it either already contains t nodes
or all the nodes adjacent to the current entity have already been visited. In
the end, the randomly chosen attribute a of the last visited entity e, such that
(e, p, a) ∈ A from the literals structural component is added to the sequence. If
categories are considered, then the pairs (e, c) ∈ C are treated as undirected
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edges during the walking procedure so that it does not need to be terminated
when category nodes, which typically do not have outgoing edges, are reached.

Mixing with Surface Forms. To fulfill the need to work with user queries
constructed in natural language in the typical ad-hoc entity retrieval scenario,
the model should have the ability to properly embed the words that can be
found in entity and category names. For that, after walks are generated, entity
and category URIs are randomly replaced with probability r by their respective
surface forms consisting of word tokens. If an entity or category has more than
one surface form, the surface form for URI replacement is chosen uniformly at
random from the set of available surface forms. In theory, this might create an
issue with not utilizing all available surface forms for an entity, but in practice,
this doesn’t happen, since the number of generated random walks γ is typically
much larger than the number of available surface forms for any given entity. If
the predicates component is used, then the same procedure is also performed
for the predicate URIs in the sequences.

Training Objective. Finally, to obtain the embeddings for words, entities,
and, optionally, categories and predicates (if the corresponding knowledge graph
structural components were used for sequence generation), the Skip-Gram-based
model with Negative sampling [18] is trained on the resulting set of |E|∗γ random
walks consisting of elements ξ1, . . . , ξT , where ξ1...T are either URIs or words,
and T ≥ t is the length of a random walk after replacement of the URIs with
their surface forms. The model maximizes the probability of observing elements
ξO from the context of the current element ξI by using the following objective:

1

T

T∑
i=1

∑
−c≤j≤c,j 6=0

log p(ξi+j |ξi), ξ1...T ∈ Ξ,

Ξ = E ∪N

{
∪ K, if categories are used
∪ V , if literals are used
∪ P , if predicates are used.

(1)

where c is the size of the training context and the probability of observing context

element p(ξi+j |ξi) is defined using softmax as: p(ξO|ξI) =
exp(v′>

ξO
vξI )∑|Ξ|

k=1 exp(v′>
ξk

vξI )
. Note

that each element ξ has two different IN and OUT [19] embeddings: vξ and v′ξ.
In practice, calculating the softmax denominator of p(ξO|ξI) is infeasible, and it
is approximated using negative sampling.

The objective from Eq. (1) is maximized using stochastic gradient descent
to learn IN and OUT embeddings of size d with derivatives estimated using
back-propagation. To better utilize cross-dependencies between IN and OUT
spaces [19], we use a concatenation of IN and OUT embeddings for words and
OUT and IN embeddings for entities. Thus, our final embeddings are vectors of
size d ∗ 2. Note that the proposed method can scale to large knowledge graphs,
since all three steps of it are easily parallelizable.
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3.3 Embedding-based Entity Search

The obtained embeddings can be used to score entities with respect to a given
user query in the following way. For a query Q consisting of the query terms
q1, . . . , qk, we compute embedding of the entire query q by calculating the
weighted sum of embeddings of individual query words:

q =

k∑
i=1

a

p(qi) + a
vqi , (2)

where p(qi) is a unigram probability of the query term qi in the corpus of knowl-
edge graph literals, and a is a free parameter [1]. The ranking scoreKEWER(Q, e)
of an entity e is then calculated as cosine similarity between entity embedding
ve and query embedding q:

KEWER(Q, e) = cos(q,ve) (3)

This score can be used directly to score all entities in a given knowledge graph,
or used in a re-ranking scenario by combining it with traditional retrieval models
such as BM25F-CA with the score BM25F (Q, e) that uses term counts in the
fields of a textual description of entity e. To parameterize the degree of influence
of KEWER on the final ranking, its score can be multiplied by the importance
weight β:

MM (Q, e) = βKEWER(Q, e) + (1− β)BM25F (Q, e), 0 ≤ β ≤ 1 (4)

Utilizing Entity Linking in Queries. Besides considering only words from
queries, we can perform entity linking in queries to find the URIs of entities men-
tioned in them. For DBpedia, this can be done by using DBpedia Spotlight [7],
SMAPH [6], or Nordlys toolkits [11]. After that, the embeddings of linked enti-
ties e1, . . . , em are used in conjunction with the embeddings of query words to
calculate the embedding of the entire query as follows:

qel =

k∑
i=1

a

p(qi) + a
vqi +

m∑
i=1

s(ei)vei , (5)

where s(ei) is the entity linker’s annotation score for the entity ei. For linked
entities’ embeddings, we use a concatenation of IN and OUT embedding vectors.

We refer to the method that uses Eq. (5) to obtain query embedding as
KEWERel-tool , where tool is either Sp for Spotlight, SM for SMAPH, or N for
Nordlys LTR method, depending on which toolkit was used for entity linking.

4 Experiments

We performed a series of experiments to answer the research questions stated
in the introduction and to find the best configuration of our model by imple-
menting KEWER and evaluating it on the DBpedia-Entity v2 dataset [12]. We
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implemented random walk generation ourselves and used gensim [28] for the
Skip-Gram-based optimization step. The source code of the proposed method
and all the baselines used in the experiments, detailed dataset construction in-
structions, as well as the resulting embeddings and runs are available at https:
//github.com/teanalab/kewer.

4.1 Dataset

DBpedia-Entity v2 collection [12] was used in all the experiments reported in
this paper. Following the creators of that dataset, we used the English subset
of DBpedia 2015-10 and only considered entities that have both rdfs:label and
rdfs:comment predicates as our entity set E. Detailed statistics of this collection
are provided in Table 1.

Statistic Value

#Entities |E| 4,612,277
#Categories |K| 981,499
#Predicates |P | 40,750
Avg. # of connected entities for entity 6.62
Avg. # of categories for entity 4.61
Avg. # of surface forms for entity 3.80
Avg. # of tokens in entity surface form 2.72
Avg. # of literals for entity 7.53
Avg. # of tokens in literal 2.45

Table 1. Collection statistics.

C: Categories
L: Literals
P: Predicates
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Fig. 1. nDCG100 for different combinations
of source information used to train embed-
dings.

Entity search experiments were conducted using four query sets from [12]:
SemSearch ES contains 113 named entity queries; INEX-LD contains 99
keyword-style IR queries; ListSearch contains 115 list search queries; QALD2
contains 140 more complex question answering queries. Following DBpedia-
Entity v2 creators, we mainly focus on nDCG100, nDCG10, and MAP evaluation
metrics. The cutoff of 1000 is used for calculating MAP.

4.2 Parameter Sensitivity

To find the optimal values for the length of the random walk t and the re-
placement probability r, we performed a parameter sweep over the values of
t ∈ {2, 3, . . . , 10} and r ∈ {0.1, 0.2, . . . , 0.9} to find out a setting that results in
the highest nDCG on the query set. We found that the model always performs
better with higher values of t, and the performance saturates around t = 10,
which we use as the parameter value in the experiments. For replacement prob-
ability, the model also performs better with higher values of r reaching top
nDCG10 with r = 0.9, the value we use in the experiments. Note that we can’t
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use r = 1 since there won’t be any URIs for training entity embeddings (ve in
Eq. (3)) in this case, since they all will be replaced with surface forms. Similarly,
we perform a sweep for the context size c ∈ {1, 3, . . . , 15} to find out the optimal
value (c = 5) and term weighting parameter a ∈ {10−i, 3× 10−i : 1 ≤ i ≤ 5} to
find the optimal value (a = 3×10−4). In all subsequent experiments, we generate
100 random walks for each entity and use 5 negative samples during training.

4.3 Usefulness of Structural Components

Since it is unclear which structural components will result in embeddings that
are the most useful for entity search, in the first experiment, we attempt to
answer RQ2 by trying all possible combinations of using categories, literals,
and predicates structural components for training word and entity embeddings
by KEWER. Figure 1 illustrates nDCG100 of KEWER averaged over all queries
from four query sets when different combinations of structural components are
used. In this figure, Ø corresponds to the configuration when only R is used to
generate random walks.

From Figure 1 it can be concluded that using all three structural compo-
nents is helpful for entity search, with categories providing the most benefit
and predicates providing only a slight increase in retrieval accuracy. Regard-
ing the specific query sets, we observed that using predicates on SemSearch
ES decreased performance, which can be explained by their ineffectiveness for
named entity queries that only contain entities’ surface forms. On INEX-LD, we
observed that not using literals resulted in better performance, which can be
explained by the lack of attribute mentions in this query set’s keyword queries.
In the following experiments we use the word and entity embeddings that are
trained using all three knowledge graph’s structural components (categories,
literals and predicates) and are made publicly available.

4.4 Jointly Embedding Model

As a baseline for learning embeddings, we used our implementation of the Jointly
(desp) [45]. LJ , the loss function for Jointly consists of the knowledge and the
text component losses (LK and LT , respectively) and the alignment loss LA:

LJ = LK + LT + LA
The knowledge component is formulated similar to TransE [3] with a single

embedding space for entities and relations R. Both text and alignment com-
ponents use textual descriptions of entities obtained from the short abstracts
of entities using the rdfs:comment property. The text component in our imple-
mentation is formulated as a CBOW model with a single embedding space for
words. The alignment component predicts the entity embedding given the sum
of embeddings of words in entity description. As an alternative to using entity
descriptions, we also implemented Jointly (sf) model, where alignment and text
models are trained using all available surface forms for entities from S. As in
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the Section 3.3, we define three entity linking extensions of Jointly (Jointlyel-Sp ,
Jointlyel-SM , and Jointlyel-N ) using three different entity linking tools.

4.5 Entity Linking

Table 2. Retrieval performance with
entity linking. The best result is in bold.

Model nDCG10 nDCG100 MAP

KEWER 0.2102 0.2569 0.1449
KEWERel-Sp 0.2417 0.2803 0.1579
KEWERel-SM 0.2704 0.3098 0.1780
KEWERel-N 0.2660 0.3083 0.1775

Jointly (desp) 0.0486 0.0547 0.0211
Jointlyel-Sp (desp) 0.1603 0.1587 0.0838
Jointlyel-SM (desp) 0.1981 0.1924 0.1014
Jointlyel-N (desp) 0.1870 0.1814 0.0981
Jointly (sf) 0.0291 0.0393 0.0137
Jointlyel-Sp (sf) 0.1365 0.1357 0.0684
Jointlyel-SM (sf) 0.1685 0.1627 0.0795
Jointlyel-N (sf) 0.1624 0.1598 0.0836

We annotated all 467 queries us-
ing public DBpedia Spotlight API
with confidence = 0.5, SMAPH, and
Nordlys LTR and report the results
for all entity linking models in Ta-
ble 2. We don’t weight linked entities
by their scores in Jointly, since we have
found that entity weighting is not ben-
eficial to this model. Results indicate
that using the SMAPH entity linker re-
sults in the best performance for both
KEWER and Jointly. For Jointly, us-
ing entity descriptions results in better
performance than using surface forms.

Table 2 shows that, even without
entity linking, KEWER outperforms both Jointly and Jointly with entity link-
ing based on all metrics. A significant increase in performance of Jointly after
performing entity linking suggests that word embeddings learned by Jointly are
not useful for entity search, and most of its performance comes from the TransE-
based component. This situation is particularly dangerous for queries that do
not have entity mentions, such as “Who produced the most films?” or “What is
the highest mountain?”.

4.6 Mixture Model

It is clear from the above results that KEWER can be a weak ranker by it-
self. To achieve state-of-the-art results for ad-hoc entity search and to answer
RQ3, KEWER can be combined with the BM25F-CA model [42], which showed
good results in [12]. We implemented BM25F by indexing entities with Galago
using 5 fields (names, categories, similar entity names, attributes, and related
entity names) for entity descriptions, as was proposed in [44]. Parameters of
the model were separately optimized with a coordinate ascent on each query set
using nDCG10 as the target metric and 5 cross-validation folds from DBpedia-
Entity v2. For each query, we scored the top 1000 results obtained with BM25F
using MM (Q, e) score from Eq. (4). The parameter β was optimized using cross-
fold validation by sweeping between zero and one with 0.025 increments and
choosing the setting that results in the highest nDCG100 on each fold’s train-
ing set. BM25F results were not significantly improved by re-ranking them
using Jointly, and we don’t report these results. However, in our attempt to
answer RQ4, we were able to obtain good results by applying word embed-
dings trained with word2vec’s Skip-Gram with the hyperparameter values from
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Section 4.2, trained on the corpus of entity descriptions, where 5 aforemen-
tioned fields were combined into one textual description of an entity. The best
results with word2vec for entity ranking were obtained when entity embeddings
were obtained by summing up without weighting the OUT embeddings of words
from their name (rdfs:label property), and IN embeddings were used for query
terms with weighting. Results on each query set for BM25F, BM25F+word2vec,
BM25F+KEWER, BM25F+KEWERel-SM are presented in Table 3.

Table 3. Re-ranking results per query set for KEWER with and without entity linking,
and word2vec. Statistically significant improvements (determined by a randomized test
with α = 0.05) over BM25F and BM25F+word2vec are indicated by “?” and “†”,
respectively. The best result in each column is boldfaced.

SemSearch ES
Model nDCG10 nDCG100 MAP

BM25F 0.6606 0.7391 0.5693
BM25F+word2vec 0.6798? 0.7445 0.5712
BM25F+KEWER 0.6606 0.7333 0.5627
BM25F+KEWERel-SM 0.6619 0.7409 0.5690

INEX-LD
Model nDCG10 nDCG100 MAP

BM25F 0.4456 0.5127 0.3271
BM25F+word2vec 0.4591 0.5227 0.3406?

BM25F+KEWER 0.4676? 0.5298? 0.3417?

BM25F+KEWERel-SM 0.4577? 0.5215? 0.3363?

ListSearch
Model nDCG10 nDCG100 MAP

BM25F 0.4287 0.4989 0.3506
BM25F+word2vec 0.4235 0.5055? 0.3551
BM25F+KEWER 0.4402† 0.5210?† 0.3752?†

BM25F+KEWERel-SM 0.4451?† 0.5251?† 0.3777?†

QALD-2
Model nDCG10 nDCG100 MAP

BM25F 0.3442 0.4375 0.2861
BM25F+word2vec 0.3567? 0.4504? 0.2986?

BM25F+KEWER 0.3859?† 0.4743?† 0.3154?†

BM25F+KEWERel-SM 0.3800?† 0.4700?† 0.3081?†

All queries
Model nDCG10 nDCG100 MAP

BM25F 0.4631 0.5416 0.3792
BM25F+word2vec 0.4730? 0.5504? 0.3874?

BM25F+KEWER 0.4831?† 0.5602?† 0.3955?†

BM25F+KEWERel-SM 0.4807?† 0.5601?† 0.3944?†

The results demonstrate that re-ranking by KEWER is particularly useful for
complex question answering queries from QALD-2, list queries from ListSearch,
and keyword queries from INEX-LD, while being less useful for simple named
entity queries from SemSearch ES, where word2vec thrives. For queries from
ListSearch, KEWER is particularly useful when used in combination with en-
tity linker, while for QALD-2 and INEX-LD using entity linking provides lower
performance gain. This can be explained by the lack of useful entity mentions
in QALD-2 and INEX-LD queries. In QALD-2 queries, mentioned entities are
often of a different category than the entity of user’s interest and have a complex
relationship with it. Using the embeddings of linked entities, in this case, would
skew results in the wrong direction. Instead, using plain KEWER helps to clarify
the query’s intent directly from its keywords.
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4.7 Success/Failure Analysis

To illustrate the positive effect of using KEWER on retrieval accuracy, we an-
alyze a sample query SemSearch_LS-50 “wonders of the ancient world” where
employing KEWER embeddings resulted in a performance boost. The top results
for BM25F and KEWER (without interpolation with BM25F) are presented in
Table 4. From these results, it is evident that BM25F failed to capture the con-
ceptual focus of the query by using term matching and most of its top results are
only marginally relevant to the query’s main focus. On the other hand, KEWER
correctly identified the query’s main focus on the ancient world, providing five
highly relevant results in the ranking.

Table 4. Top 10 ranked entities for the query “wonders of the ancient world” for differ-
ent models. Relevant results are italicized and highly relevant results are boldfaced.

BM25F KEWER

Seven Wonders of the Ancient World Colossus of Rhodes
7 Wonders of the Ancient World (video game) Statue of Zeus at Olympia

Wonders of the World Temple of Artemis
Seven Ancient Wonders List of archaeoastronomical sites by country

The Seven Fabulous Wonders Hanging Gardens of Babylon
The Seven Wonders of the World (album) Antikythera mechanism

Times of India’s list of seven wonders of India Timeline of ancient history
Lighthouse of Alexandria Wonders of the World
7 Wonders (board game) Lighthouse of Alexandria

Colossus of Rhodes Great Pyramid of Giza

An example of a query where KEWER was unable to identify query focus
is “goodwill of michigan”, where it returns entities that are related to Goodwill
Games instead of Goodwill Industries. This is caused by the fact that there exist
a lot of entities with words “Goodwill Games” in their surface forms, which makes
the model believe that token “goodwill” has a strong association with games.

5 Conclusion

This paper proposed KEWER, a method to learn joint word and entity em-
beddings that was experimentally shown to be effective for entity search, which
addresses RQ1.

To answer RQ2, we compared the effectiveness of embeddings trained on
various combinations of knowledge graph structural components and found out
that using a combination of categories, literals, and predicates results in the
highest retrieval accuracy on DBpedia-Entity v2.

To answer RQ3 and RQ4, we performed an evaluation of KEWER in the
re-ranking scenario where it was used in combination with the BM25F retrieval
model. Experimental results indicate that KEWER is particularly suitable for
improving the ranking of results for complex entity search queries, such as ques-
tion answering, list search, and keyword queries.
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