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ABSTRACT

In this work, we study a new text mining problem of dis-
covering named entities with temporally correlated bursts of
mention counts in multiple multilingual Web news streams.
Mining named entities with temporally correlated bursts of
mention counts in multilingual text streams has many inter-
esting and important applications, such as identification of
the latent events that attracted the attention of on-line me-
dia in different countries, and valuable linguistic knowledge
in the form of transliterations. While mining “bursty” terms
in a single text stream has been studied before, the prob-
lem of detecting terms with temporally correlated bursts in
multilingual Web streams raises two new challenges: (i) cor-
related terms in multiple streams may have bursts that are
of different orders of magnitude in their intensity and (ii)
bursts of correlated terms may be separated by time gaps.
We propose a two-stage method for mining items with tem-
porally correlated bursts from multiple data streams, which
addresses both challenges. In the first stage of the method,
the temporal behavior of different entities is normalized by
modeling them with the Markov-Modulated Poisson Pro-
cess. In the second stage, a dynamic programming algorithm
is used to discover correlated bursts of different items that
can be potentially separated by time gaps. We evaluated
our method with the task of discovering transliterations of
named entities from multilingual Web news streams. Ex-
perimental results indicate that our method can not only
effectively discover named entities with correlated bursts in
multilingual Web news streams, but also outperforms two
state-of-the-art baseline methods for unsupervised discovery
of transliterations in static text collections.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data mining ; I.2.7 [Artificial Intelligence]: Natural Lan-
guage Processing—Text analysis
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1. INTRODUCTION
The vast amounts and availability of textual data con-

stantly generated on the Web (in the form of news, blog
articles, newsgroup posts, consumer reviews, etc.) open up
many possibilities for exploring new interesting data min-
ing problems. Most existing research on text stream mining
has focused on mining single text streams (e.g., [9, 18]).
Web data, however, is naturally generated by a large num-
ber of streams, and hence there exist many unique Web-
specific problems, which require taking into account complex
interactions and dependencies in the behavior of multiple
streams.

One such problem is, given a collection of multilingual
textual streams in the form of the on-line news documents
provided by the RSS feeds of news agencies in different coun-
tries, discover named entities (such as names of people, or-
ganizations or geographic locations), which exhibit similar
pattern in the form of temporally correlated bursts of their
mentions in the documents produced by the streams. Such
patterns are often very meaningful. We define the burst of
an entity as a sudden and sharp increase in the total num-
ber of its occurrences in the documents generated by all the
Web news streams in the same language. Temporally corre-
lated bursts are simultaneous bursts of (potentially different)
terms in different text streams which consistently occur at
similar points or intervals of time.

In general, “bursty” terms in text streams are interest-
ing to study, since they often signal changes in some la-
tent variable. For example, a sudden increase of mentions
of a particular named entity in the news streams is gen-
erally correlated with the happening of a particular event.
Specifically, when a major international event happens, news
streams tend to frequently mention certain named entities
(e.g., people, locations, and organizations) associated with
it, leading to temporally correlated bursts of related en-
tities. If we can discover named entities with correlated
bursts from textual streams in different natural languages,
we will be able to group semantically related named enti-
ties in different languages together and potentially discover



transliteration relations of proper names in an unsupervised
way. Since proper names grow in an open-ended way, it
is hard to manually create an exhaustive list of translitera-
tions for all possible proper names. Therefore, methods to
automatically mine such transliterations can be very use-
ful, particularly for cross-language information retrieval and
machine translation. In addition to that, the vastness of the
Web data ensures the coverage of transliterations in all pos-
sible domains, including the new and emerging ones, that
no dictionary can guarantee. Therefore, terms with tempo-
rally correlated bursts of mention counts not only constitute
valuable knowledge by themselves, but can also be used to
identify latent events that cause the change in the behavior
of multiple text streams.
Moreover, entities with temporally correlated bursts can

also reveal how particular events are represented in differ-
ent languages (or countries). For example, by knowing the
entities that occur in the news wires of different countries
much more frequently than usual during a particular time
point or interval, one can not only discover the major events
happening at that moment, but also differentiate between
the local events, which are important only to one country,
and global events, which attract the interest of the media
from different countries. In addition to that, the social im-
pact of a real life event can be estimated by the strength
and duration of the bursts of certain named entities that
it causes. As a specific example, the nomination of Sarah
Palin as a republican vice-presidential candidate during the
2008 presidential election campaign has caused intense and
long-term bursts of mention counts of the term “Palin” in
the U.S. news streams, but in other countries this event was
only briefly mentioned in the news wires.
While mining “bursty” terms in a single text stream has

been studied previously (e.g., [9]), mining terms with cor-
related bursts from multiple Web text streams raises three
interesting new challenges:

1. Difference in burst magnitude: correlated entities
in multiple multilingual streams may have bursts that
are of different orders of magnitude in their intensity
in streams, corresponding to different languages. For
example, the bursts of terms related to a major U.S.
event (e.g., “Katrina”) are likely to be several orders
of magnitude higher in the U.S. news media than the
bursts of the corresponding entities in, for example,
the Russian media. Thus, using raw mention counts
of terms will likely produce inaccurate results.

2. Temporal lag: it is often the case that there exists
a temporal lag between the time points, at which the
on-line media in different countries start covering the
same event. Therefore, our method cannot assume
the temporal alignment of bursts for the same enti-
ties in different languages and needs to account for the
fact that there may be irregular time gaps between the
bursts, corresponding to the related entities in multi-
lingual news streams.

3. Entities are much more fine-grained units, than

documents or topics: topics are (possibly unbounded)
sets of terms with associated probabilities. Major events
may cause long-term correlated bursts of a large num-
ber of entities, whereas bursts corresponding to minor
events may last for a very short time and involve only

a few entities. For this reason, although topic-based
event detection methods can discover a small number
of topics reflecting major, long-term and very influen-
tial events, they are likely to miss many minor and
short-term correlated bursts of individual terms.

In this work, we propose a two-stage method for mining
items with temporally correlated bursts from multiple data
streams. In the first stage of the method, the temporal be-
havior of individual entities in news streams is normalized by
modeling them with the Markov-Modulated Poisson Process
(MMPP). The MMPP provides a necessary level of abstrac-
tion over the raw stream data, which ensures robustness of
the approach against the differences in the magnitude of
bursts of individual entities, thus addressing the first issue
outlined above. In the second stage, we propose to use a
dynamic programming algorithm to discover entities with
correlated bursts that can be potentially temporally sepa-
rated by irregular gaps, thus addressing the second issue.

In summary, the main contributions of this work are as
follows:

• We formulated a novel multi-stream text mining prob-
lem of detecting named entities with correlated bursts
in on-line news streams. To the best of our knowledge,
the present work is the first attempt at solving this
problem;

• We proposed a two-stage solution to the formulated
problem, which combines a theoretically justified prob-
abilistic modeling method with a dynamic program-
ming algorithm to address the unique challenges of the
proposed problem, which are specific to the Web. Al-
though in this paper we focus on the textual domain,
the proposed method is essentially general and data
independent. Thus, it can also be potentially applied
to mining items with temporally correlated bursts in
any type of data streams;

• To the best of our knowledge, this is the first work that
proposed to formalize the problem of burst detection
as modeling the stream behavior with the discrete-time
Markov Modulated Poisson Process;

• We empirically demonstrated that the proposed method
can effectively discover named entities, corresponding
to major and minor real life events from multiple real
multilingual Web news streams. In addition to that,
we presented experimental results, indicating that our
method has comparable performance to the two state-
of-the-art methods for automatic detection of translit-
erations in parallel static corpora, and, thus, can be
applied to solving this important practical problem as
well.

The rest of the paper is organized as follows. In the next
Section, we briefly discuss the major lines of research re-
lated to the present work. In Section 3, we formally de-
fine the problem of mining named entities with correlated
bursts from multiple text streams, followed by a high-level
overview of our two-stage method in Section 4. We discuss
how MMPP can be used for modeling the behavior of data
streams and present an EM algorithm for estimating its pa-
rameters in Section 5. A dynamic programming algorithm
to discover entities with temporally correlated bursts is dis-
cussed in detail in Section 6. We present and discuss the



evaluation results in Section 7 and conclude with the sum-
mary and directions for future work.

2. RELATEDWORK
In this section, we provide a brief overview of three ma-

jor research lines, related to different aspects of the present
work: burst detection, multi-stream text mining and au-
tomatic transliteration. Burst detection is an important
problem in stream data management. Previous research
has clearly demonstrated that different problems, involving
streams of various types and data volumes, require differ-
ent approaches to burst detection. Kleinberg [9] proposed
an infinite-state automaton to model complex hierarchical
structure of nested bursts in a stream of emails. In topic de-
tection and tracking (TDT), Swan et al. [18] proposed to use
the χ2-test and Krause et al. [11] a combination of Factorial
HMMs and exponential order statistics to identify periods
of topical bursts in various static text collections. Zhu et al.
[23] used sliding window smoothing and wavelet transfor-
mations for detecting bursts in large-scale astrophysical and
stock trading data streams. Parikh et al. [14] proposed a
method for detecting and classifying bursts in users queries
to a large scale e-commerce system. Although smoothing-
based burst detection methods can be used for large volume
data streams, they are not suitable for precise alignment of
bursts across multiple data streams, due to potential dis-
tortion of shape, duration and magnitude of bursts after
smoothing. In addition to that, distance-based measures for
similarity of bursts generally have a common disadvantage
in that they require data-dependent tuning of threshold pa-
rameters.
In general multi-stream mining, several methods [16] [22]

[8] have been proposed to detect correlations between entire
data streams. Most of the proposed methods, however, re-
lied on geometric distance measures on the raw stream data
and disregarded potentially useful characteristic features of
stream behavior, such as bursts, thus trading accuracy for
efficiency and applicability to large-volume streams. Ide at
al. [8] introduced singular spectrum transformations to de-
tect correlations between time series based on change-point
scores. Streams of mention counts of particular named en-
tities in news wires, however, are not high-volume streams
and the task of aligning them favors precision over efficiency.
A few existing works on mining multiple textual streams
adopted a document-level view of streams and proposed ex-
tensions to existing probabilistic methods for topic model-
ing, such as PLSA in Wang et al. [20] and LDA in Wang
et al. [21] and Blei et al. [2], to detect the common top-
ics, shared across multiple textual streams. These methods
can detect only 10-15 major topics, shared across the en-
tire textual streams. Although it has been demonstrated
that topic modeling-based methods can potentially capture
some major long-term events and the terms, describing those
events, they are likely to skip many short-term events and an
even larger number of entities and terms, corresponding to
those events. Moreover, since topics define distribution over
a large number of general terms and can be quite vague, it
is hard to accurately and automatically align them, without
explicit semantic labeling. Even if such alignment is per-
formed, there still remains a problem of extracting related
pairs of entities from the aligned topics. Therefore, topic-
based approaches are not applicable to the fine-grained, low-
level task of alignment of individual named entities.

Machine transliteration is the process of matching words
in the source language with their approximate phonetic or
spelling equivalents in the target language. Existing ap-
proaches to automatic transliteration mostly require linguis-
tic knowledge to construct phonetic similarity models for
particular pairs of languages such as English-Arabic [1], English-
Chinese [12] or English-Japanese [10] and usually require su-
pervision. Unsupervised methods have the advantage that
they can work with any pair of languages and require less
effort to implement. Previous work on unsupervised auto-
matic transliteration includes approaches, that involve com-
puting simple distance measures, such as the Pearson corre-
lation coefficient [19] over the raw streams of entity mention
counts, or the normalized cosine similarity [17] over the raw
streams smoothed by a sliding window. The Pearson cor-
relation coefficient was also used in [3] to find semantically
related queries. Since these methods disregard other strong
similarity signals and rely only on general correlation mea-
sures between the time series of mentions counts, one can
envision that as the number of entities increases with the
amount of data generated by textual streams, there may be
a fairly large number of entities, whose entire time series
of mention counts are correlated, according to simple dis-
tance measures. It has been experimentally demonstrated
that these methods can discover related entities in parallel
static corpora of small size. However, it is interesting to
know whether these methods can be accurate in detecting
transliterations in the Web news streams as well. Although
our method is designed to address the specific challenges of
Web textual streams, it is interesting to compare its perfor-
mance relative to other methods for similar tasks, such as
automatic transliteration, which we do in Section 7, using
both of the above-mentioned methods as baselines.

As follows from the above discussion, our proposed ap-
proach for detection of entities with correlated bursts can
also provide a novel solution to another important inter-
disciplinary problem. Although evaluation of the proposed
method focused on discovering correlated bursts of named
entities, we would like to note that our method is data in-
dependent in nature and can be used to detect items with
correlated bursts in any type of data streams. We now move
on to a high-level overview of the proposed method.

3. PROBLEM DEFINITION
Informally, the problem addressed in the present work can

be formulated as follows. Given a collection of text streams
as input, identify all pairs of named entities in different lan-
guages that have temporally correlated bursts. Before mov-
ing on to the high-level overview and more in-depth discus-
sion of our approach, we need to define the key concepts
behind it.

Definition 1. (Text Stream) A textual data stream S
of length M is a temporally ordered sequence of documents
{D1, D2, . . . , DM} over T discrete, non-overlapping time in-
tervals 1, 2, . . . , T , such that each document in the sequence
has an associated time stamp.

Since each document in a sequence has a time stamp, doc-
uments can be grouped into sets, in such a way that each
document in a set belongs to a certain time interval (t−1, t],
1 ≤ t ≤ T . According to the above definition, documents
produced by news agencies naturally form temporarily or-
dered textual streams.



Definition 2. (Stream of Entity Mention Counts)
A stream of mention counts C for a named entity E is a tem-
porarily ordered numerical sequence {c1, c2, . . . , cT } of the
number of times a named entity E occurs in the documents
of the text stream S within each of the T − 1 time intervals.

Definition 3. (Burst) Given a named entity E and its
stream of mention counts C, if ∃t1, t2 ∈ [1, T ], such that
t2 − t1 = τ and ∀t ∈ [t1, t2], ct ≥ σ, then an entity E has a
burst of duration t2 − t1.

Bursts correspond to one or several adjacent time intervals
in a stream of entity mention counts, in which the counts
are greater or equal than the threshold σ. An entity and its
corresponding stream of mention counts may have several
bursts. Next we extend the definition of a burst to the case
of multiple streams.

Definition 4. (Correlated Burst) Let E1 and E2 be
a pair of entities that have bursts at the intervals [t11, t12]
and [t21, t22] in the streams of their mention counts C1 and
C2 respectively. If the boundaries of [t11, t12] and [t21, t22]
are within the τ time intervals, then the named entities E1

and E2 have a correlated burst.

In other words, correlated bursts occur when the mention
counts of two entities are both above the threshold during
the temporally close time intervals. We now move on to an
overview of our method.

4. TWO-STAGE METHOD
As discussed in the introduction, existing methods for dis-

covering correlated bursts cannot address the two potential
variations of bursts across the different streams: (i) bursts
may be of different orders of magnitude (ii) bursts may be
separated by time gaps. These two limitations are illustrated
by an example in Figure 1. In this example, the two entities
have clearly correlated bursts in their streams of mention
counts, despite the relative difference in the magnitude and
the time lag between them.

Figure 1: Example of the two streams, correspond-

ing to mention counts of the same entity in Russian

and English streams. The temporal behavior with

respect to bursts is clearly correlated, despite the

relative difference in the magnitude of bursts and

the time gap between them.

Our method consists of the two stages. In the first stage,
we assume that the temporal behavior of named entities
in textual data streams can be characterized by a discrete
stochastic process, whose latent parameters can be estimated
in a well-defined and precise way. As such probabilistic
model, we propose to use the Markov Modulated Poisson
Process (MMPP) [6]. MMPP is formally defined as a dou-
bly stochastic Poisson process [7], whose intensity is time-
varying according to a finite, non-observable Markov chain.
Since in the context of our problem the time intervals are
strictly bounded, we are using MMPP with discrete-time
Markov chain. In general, a discrete-time MMPP is a Hid-
den Markov Model (HMM) [5, 13, 15], in which the Pois-
son distribution is used as an emission distribution. Given
an observation sequence, HMM can explain it in terms of
unobserved sequence of model state changes and probabil-
ity density functions associated with model states. In case
of MMPP, each state is associated with a Poisson process,
generating mention counts according to the Poisson rate pa-
rameter. MMPP starts from a certain state according to
the initial state probability distribution and undergoes state
changes over time, according to the matrix of state transition
probabilities. Fitting MMPP for a given sequence of obser-
vations involves estimating the matrix of transition proba-
bilities for the Markov chain and the intensity parameters
of the Poisson processes, associated with the states in the
model.

Thus, in the first stage the streams of entity mention
counts C = {C1, C2, . . . , CK} are extracted for any number
K of named entities discovered in the collection of multiple
raw textual streams S = {S1,S2, . . . ,SM} of length T . Then
the parameters M1,M2, . . . ,MK of MMPPs, corresponding
to each stream of mention counts in C, are estimated by us-
ing an EM algorithm, described in Section 5.3, after which
each stream of entity mention counts Ci in C is mapped into a
stream of temporal behavior (or“burstiness”) coefficients Φi.
As can be seen in Figure 1, the bursts in the first and second
streams are of different orders of magnitude, therefore using
non-normalized distance measures may indicate low corre-
lation of the streams. Mapping the raw mention counts to
the“burstiness”coefficients allows to abstract away from the
raw data and achieve uniform normalization.

In the second stage, we run a dynamic programming align-
ment algorithm, described in Section 6, on the space of all
pairs of streams of temporal behavior coefficients Φ×Φ to de-
tect the pairs of streams with temporally correlated bursts.

5. MODELING BURSTS WITH MMPP

5.1 General Idea
Given S = {S1,S2, . . . ,SP }, a collection of P text streams

over T discrete time intervals, our method first creates a set
of K streams of entity mention counts C = {C1, C2, . . . , CK}
over the same number of T time intervals by extracting the
number of mentions of each named entity during each time
interval from all streams in S. At the next step, each stream
of entity mention counts Ci is modeled with the Markov
Modulated Poisson Process Mi. In particular, the behavior
of each named entity Ei ∈ V at each time interval (t− 1, t],
1 ≤ t ≤ T of Ci is characterized by the value of the ex-
pectation λ of the Poisson distribution, associated with the
state that the MMPP is in at that time interval (i.e., λ is
the expectation of the number of mention counts of the en-



tity during the corresponding time interval). The vector of
expectations of the Poisson distribution can be sorted in as-
cending order and each time interval can be labeled with
the rank of λ corresponding to it, instead of the λ itself.
Therefore, φit, the rank of λ, can be viewed as an entity
“burstiness” coefficient, with larger values of φit correspond-
ing to the states with larger values of expectation for the
number of entity mentions (i.e. more “bursty” states). It
follows that there exists a unique and natural mapping from
a stream of entity mention counts C into a stream of “bursti-
ness” coefficients φ = {φ1 = rλ1

, φ2 = rλ2
, . . . , φT = rλT

},
where rλ1

, rλ2
, . . . , rλT

are the ranks of λ1, λ2, . . . , λT in the
sorted vector of expectations of the Poisson distribution as-
sociated with each state of MMPP. In other words, given a
fully specified MMPP and a sequence of observed mention
counts for a named entity over a set of discrete time in-
tervals, we can model the observation sequence by labeling
each interval with the state that the hidden Markov chain
of MMPP is in at that interval, in such a way that states
with larger numbers, correspond to more“bursty”states. An
example of such labeling is shown in Figure 2.

Figure 2: Example of a stream, in which the time

intervals are labeled by its activity level, with larger

numbers corresponding to more “bursty” states.

5.2 Formal Definition
We now define the MMPP more formally. With MMPP,

each stream is modeled as a finite-state, discrete-time Markov
chain with N distinct states S = {S1, S2, . . . , SN}, which at
any given time point t can be in one of the N states. The
distribution of observations (mention counts) at time t is
determined by the intensity parameter of the Poisson dis-
tribution, which is associated with the state St, that the
Markov chain is in at time t. At the end of each time stamp
t = 1, 2, . . . , T , the Markov chain undergoes a state change,
from state i to state j (where j can be the same as i) with the
probability Aij , according to an N ×N matrix A = {ai,j},
i = 1 ≤ i, j ≤ N , of state transition probabilities. Let
Q = (q1, q2, . . . , qt, . . . , qT ), where qi ∈ {S1, . . . , SN} for
i = 1, 2, . . . , T be an unobservable random vector, whose el-
ements follow an N -state first-order Markov chain over the
state space S with unknown matrix of state transition prob-
abilities A and unknown distribution of initial state prob-
abilities π = {πi, . . . , πN}. The number of mention counts
ct of any given entity during the time interval (t− 1, t] can
be characterized by the following Poisson probability distri-
bution, depending on the hidden state qt that the Markov
chain is in at time t:

Pr(ct|qt) =
e−λqtλct

qt

ct!

where λqt is the expectation of the number of mention counts
of an entity at time t, given that MMPP is in state qt. There-
fore, in order to model temporal behavior of any named

entity with respect to its “burstiness” at any given time
point, we need to estimate the following triplet of param-
eters of an N -state ergodic MMPP M = (A, π, λ), where
λ = {λ1, λ2, . . . , λN} is the vector of Poisson rates, associ-
ated with each state of the Markov chain.

Given a stream of observations C, we need a computa-
tionally efficient procedure to estimate the parameters M =
(A, π, λ) of MMPP and determine the optimal state se-
quence of the unobservable Markov chain Q, corresponding
to C. This can be viewed as a process of finding a model M
in a space of all possible models, such that it maximizes the
probability of observing C:

M = argmax
A,π,λ

P (C|A, π, λ)

In principle, one can compute P (C|A, π, λ) by computing
the joint probability P (C, q1, q2, . . . , qT |A, π, λ) for all pos-
sible hidden state sequences of length T q1, q2, . . . , qT , and
marginalize over all state sequences:

P (C|A, π, λ) =

SN
∑

q1=S1

· · ·

SN
∑

qT=S1

P (C, q1, q2, . . . , qT |A, π, λ)

(1)
where

P (C, q1, q2, . . . , qT |A, π, λ) = πq1

T
∏

t=2

(

e−λqtλct
qt

ct!
Aqt−1,qt

)

Since the amount of computation using the above formulas
quickly becomes intractable, as the length of observation
sequences grows, we use an EM algorithm [4], described in
the next section, to maximize (1).

5.3 EM algorithm
For the purpose of clarity, we define two conditional prob-

abilities, given the observation sequence C and M, the pa-
rameters of MMPP:

• ξt(i, j), the conditional probability of the Markov chain
being in state Si at time t and in state Sj at time t+1:

ξt(i, j) = P (qt = Si, qt+1 = Sj |C,M)

• γt(i), the conditional probability of the Markov chain
being in state Si at time t, given observation sequence
C:

γt(i) = P (qt = Si|C,M)

From the above definitions, it follows that the expected num-
ber of transitions from the state Si is:

E[γ(i)] =

T
∑

t=1

γt(i) (2)

and the expected number of transitions from the state Si to
the state Sj is:

E[ξ(i, j)] =

T−1
∑

t=1

ξt(i, j) (3)

At the M-step of the EM algorithm we maximize

E[P (C, q1, q2, . . . , qT |A, π, λ)|C] (4)



We denote the vector of model parameter estimates that
maximize (4) at the p-th iteration of the EM algorithm as

M̂p. At the E-step, we compute γp+1(i) = E(γ(i)|M̂p) and

ξp+1(i, j) = E(ξ(i, j)|M̂p) for 1 ≤ i, j ≤ N , using the esti-

mate M̂p from the previous iteration of the algorithm. Ex-
pressions for the expectations of the number of times the
Markov chain is in state i and the number of transitions
from state i to state j for the E-step of an EM algorithm
are shown in Figure 3.
Closed form expressions for the estimates of model pa-

rameters M̂p = (Âp, π̂p, λ̂p) at the M-step are as follows.

Poisson rate parameters λ̂p at the M-step of the pth itera-
tion are estimated as:

λ̂p
i =

∑T

t=1
γ̂p
t (i)ct

γ̂p(i)

The probability of transition between state Si and Sj is es-
timated as:

Â
p
i,j =

ξ̂p(i, j)

γ̂p(i)

And, finally, initial state probabilities are estimated as:

π̂p
i = γp

1 (i)

In order to make an EM algorithm more efficient in terms
of the number of calculations required to compute γ̂p(i) and

ξ̂p(i, j), we can use the Forward-Backward Algorithm. The
vector of“burstiness”coefficients φ, corresponding to a given
observation sequence, can be obtained by labeling the obser-
vation sequence with the states of the Markov chain by using
the Viterbi algorithm.

5.4 Discussion
MMPP is an inherently unsupervised model. It, however,

requires one parameter, the number of states of the Markov
chain, to be specified a priori. In this work we experimen-
tally determine the optimal number of states of MMPP, as
described in Section 7.2.
Using MMPP over statistical approaches for detection of

bursts in multiple streams environment provides a uniform
level of abstraction over the raw stream data. In particular,
simultaneous bursts in multiple streams can be detected re-
gardless of their magnitude relative to each other. This is
achieved by labeling observations from streams with ordered
states of MMPP. The complexity of labeling and training
on an entire observation sequence with MMPP is O(N2T ),
where N is the number of states in MMPP and T is the
length of the sequence.

6. DETECTING CORRELATED BURSTS

6.1 Formal definition
The algorithm for detecting correlated bursts is based on

the general idea of constructing an alignment table for a pair
of streams of “burstiness” coefficients, which keeps track of
the alignment score, as the algorithm simultaneously pro-
cesses the two streams. If both streams are in “bursty”
states within the same time interval, the score is incre-
mented by a reward. If the bursts in streams are within
the maximum allowable temporal gap, the score is also in-
creased, however the reward in this case is less. If one
of the streams is in a “bursty” state and the other is not,

the score is decreased by the penalty, equal to the amount
of reward. Note that the algorithm allows to incremen-
tally align the streams, as the new data is arriving. For-
mally, given a set of streams of temporal behavior coeffi-
cients (MMPP states) Φ = {Φ1,Φ2, . . . ,ΦK} for K named
entities, where each Φ spans a period of T time intervals,
we align each pair of streams Φ1 = {φ1,1, φ1,2, . . . , φ1,T }
and Φ2 = {φ2,1, φ2,2, . . . , φ2,T } by constructing a dynamic
programming table S of size T × T , in which the element
si,j , 1 ≤ i, j ≤ T is a correlation score of the two streams
at the time points i and j with respect to their “burstiness”.
The table is constructed according to the following formulas:

si,j = max(si−1,j , si,j−1, si−1,j−1) + ri,j (5)

ri,j =















0, if φ1,i < σ and φ2,j < σ
ρ− p(i, j), if φ1,i > σ and φ2,j > σ

−ρ+ p(i, j),
if φ1,i < σ and φ2,j > σ or
if φ1,i > σ and φ2,j < σ

(6)

If both streams are in “bursty” states (above the threshold
σ), ri,j is equal to the reward constant ρ, decreased by the
penalty function p. A penalty function is a function map-
ping the length of the time gap |i − j| between the time
points i and j to the value of the penalty. Its purpose is to
penalize the correlation of bursts shifted in time relative to
each other. A penalty function can take any algebraic form,
but should be equal to 0, if there is no gap between i and j.
The maximum possible size of the gap between the bursts,
for which the streams are still rewarded, depends on ρ and
the algebraic form of the penalty function. An exponential
p = e|i−j| and quadratic p = (i− j)2 penalty functions force
to avoid larger temporal gaps between the bursts. Logarith-
mic function p = ⌊log(|i − j|)⌋, on the other hand, favors
longer lags between the bursts. Linear function p = |i − j|
decreases the reward by 1 with each day of the gap between
two bursts. For example if ρ = 3 and the penalty function
is linear, the maximum gap would be 2 time intervals. If
one of the streams is in a “bursty” state and the other one
is not, the “burstiness” score is equal to the negated reward,
which is decreased, depending on the gap between i and j.
The final correlation score is equal to sT−1,T−1. It can be
normalized by diving it by (2ρ−1)(b−1)+ρ, the maximum
possible alignment score, where b is the maximum number of
bursts (time stamps with MMPP states above the threshold)
among the two streams. Algorithm 1 is a complete dynamic
programming algorithm for determining the similarity be-
tween the streams with respect to the temporal correlation
of bursts.

The running time of Algorithm 1 is O(T 2). Therefore, the
total running time of the two-stage approach is O(N2T +
T 2), which is orders of magnitude less than the running time
of topic-based approaches [20] [21].

7. EXPERIMENTS

7.1 Data Set
All the experiments in this work have been performed us-

ing the data set consisting of documents from multiple En-
glish and Russian news wires that have been crawled over 4
months from October of 2007 to February of 2008. Statis-
tics of the experimental data set are presented in Table 1.
Since the proposed method works at the level of individ-
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Figure 3: EM updating formulas for the Markov Modulated Poisson Process

Algorithm 1 Algorithm for detecting streams with

temporally correlated bursts

Require: φ1, φ2, streams of “burstiness” coefficients of length T
Require: p, penalty function
Require: σ, threshold for “bursty” states
Require: ρ, reward constant
1: S ⇐ 0

2: for i = 0 to T − 1 do

3: for j = 0 to T − 1 do

4: if φ1,i > σ and φ2,i > σ then

5: S[i][j] ⇐ ρ− p(i, j)
6: else if φ1,i < σ and φ2,i > σ then

7: S[i][j] ⇐ −ρ+ p(i, j)
8: else if φ1,i > σ and φ2,i < σ then

9: S[i][j] ⇐ −ρ+ p(i, j)
10: end if

11: if i > 0 and j > 0 then

12: S[i][j] ⇐ S[i][j] + max(S[i − 1][j], S[i][j − 1], S[i −
1][j − 1])

13: else if j > 0 then

14: S[i][j] ⇐ S[i][j] + S[i][j − 1]
15: else if i > 0 then

16: S[i][j] ⇐ S[i][j] + S[i− 1][j]
17: end if

18: end for

19: end for

20: return S[T − 1][T − 1]

Language # Streams # Docs # Entities
english 16 53189 2048
russian 4 84610 1338

Table 1: Statistics of the data streams used for eval-

uation

ual entities, rather than entire documents in the stream,
after crawling the data we preprocessed it by constructing
a multidimensional temporal index, which allows to easily
determine the number of times a given entity occurred in all
the stream documents in the same language within a given
period if time. We did not use named entity recognizers for

detection of named entities. Instead, we extracted all capi-
talized phrases and split them into individual lexemes (e.g.
“Barack Obama”was split into “Barack” and “Obama”). We
also applied basic morphological normalization to the Rus-
sian named entities by removing inflectional endings (i.e.
Обама, Обаме, Обаме, Обамой etc. were converted to the
same stem“Обам”). After that, for each extracted entity we
extracted a stream of the number of times it was mentioned
in all the documents generated by the streams in the same
language during each of the observation days. For experi-
ments we discarded the entities that are too rare (entities,
which have less than 50 mentions in total or are mentioned
in less than 3 days over the 4 month observation period) and
too common (entities, which occurred at least once during
more than 80% of the days in the observation period). The
final number of entities (and their associated mention count
streams) in each language after such filtering is shown in
Table 1

7.2 Parameter setting
Our method has several parameters to tune. We experi-

mentally determined the sensitivity of performance to these
parameters, the effectiveness of normalization of mention
counts using MMPP and the necessity of accommodating
the time gaps.

The first parameter we examine is the number of states
in the MMPP. In Figure 4, we show the performance varia-
tion when changing the number of states of MMPP. In the
same figure, we also compare MMPP with a binning-based
baseline normalization method. The binning normalization
method searches for the minimum and the maximum ele-
ment in the time series and partitions the range between
the minimum and the maximum into a given number of in-
tervals (bins). Labels are then assigned to each element of
the time series, depending on the interval that this element
belongs to. Modeling a stream with N bins is conceptu-
ally similar to modeling it with an N -state MMPP. In order
to evaluate the performance of parameter setting, from the



index we randomly selected 40 pairs of entities from both
languages, which denote the same object. For each of those
entities, we ran our method to detect the entities with cor-
related bursts among the selected entities in the other lan-
guage. The recall measure takes into account the presence of
the correct transliteration in the top 5 candidate translitera-
tions, ranked according to the “burstiness” correlation score
computed by our method. As can be seen in Figure 4,
MMPP consistently outperforms the binning-based normal-
ization baseline, indicating that MMPP can take the advan-
tage of global model fitting to achieve better normalization.
Another important conclusion is that a 3-state MMPP is
sufficient for achieving the optimal performance.

2 3 4 5 6 7

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

# states

R
e

c
a

ll

 

 

MMPP

Binning

Figure 4: Performance of MMPP versus binning-

based smoothing

Next, we experimented with different penalty functions
and values of reward in the dynamic programming algorithm
used in the second stage of the method. We varied the value
of reward from 1 to 5 and used quadratic, linear, logarithmic
and zero (i.e. no penalty) functions.
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Figure 5: Performance of different penalty functions

Figure 5 demonstrates that the optimal performance is
achieved by using a quadratic penalty function in conjunc-
tion with the reward value of 4, which indicates that it is
necessary to accommodate the temporal gaps in order to
achieve the optimal performance.

7.3 Results
In order to evaluate the proposed two-stage approach, we

conducted two sets of experiments. The first set was aimed
at checking the ability of our method to solve its primary
task: detect entities with temporally correlated bursts in
text streams. The second set of experiments was focused on

estimating the performance of our method with respect to a
different, but conceptually related task of detecting translit-
erations. For both tasks we used the optimal configuration
of parameters, empirically determined in Section 7.2. In the
first stage, we used a 3-state MMPP, which was run for a
maximum of 500 iterations or until convergence. In the sec-
ond stage, the threshold for “burstiness” was set to 3 (i.e.,
only state 3 is considered as “bursty”), the reward was set
to 4 and quadratic penalty function was used, thus allowing
the maximum possible gap between the correlated bursts to
be one day.

7.4 Detection of entities with correlated bursts
In order to evaluate the performance of our method with

respect to the primary task of detecting entities with corre-
lated bursts, for each entity in the index in one language we
ran our method to determine the top 10 entities with cor-
related bursts among all entities in the other language. Ex-
amples of interesting mined patterns are presented in Table
2. The source entities are presented in the top row and the
most similar entities along with the burst correlation scores
are below them. Russian named entities are presented in
Cyrillic transcription along with their English equivalents.

Patterns in Table 2 have interesting interpretations. Pat-
tern 1 corresponds to the annual world economic forum, tak-
ing place during the last week of January in Davos, Switzer-
land, which usually attracts politicians, such as Italian prime
minister Silvio Berlusconi. In 2008 it coincided with a tragic
death of an actor Heath Ledger on January 22, 2008. The
second pattern corresponds to the death of a famous chess
player Robert Fischer in January of 2008. Fischer spent
the last part of his life in Iceland and his main chess rival
back in the days was Boris Spassky. Pattern 3 corresponds
to the assassination of Benazir Bhutto in Pakistan in De-
cember of 2007. Bhutto was critically wounded and rushed
to Rawalpindi General Hospital. Pattern 4 corresponds to
Jerome Kerviel, a French trader, who caused considerable
financial loss to the bank Societe Generale. This story co-
incided with the death of George Habash. As can be seen
from this example, our method can mine meaningful and
interesting patterns from the news streams.

7.5 Transliteration
In addition to evaluating the performance of our method

with respect to the primary task of detecting entities with
correlated bursts, we also compared its performance to other
methods, solving the different but conceptually close task
of automatically detecting transliterations. For this task
we randomly selected 200 entities, in such a way that they
represent the three regions of low, medium and high entropy
of their associated streams of mention counts. The entropy
H(Ci) of a stream of mention counts Ci = {ci,1, ci,2, . . . , ci,T }
is defined as:

H(Ci) = −

T
∑

t=1

ci,t/N log(ci,t/N)

where N =
∑T

t=1
ci,t. The entropy of a stream of length T

ranges from 0 to log T and can be a good indicator of the
nature of a stream. Streams with low entropy are likely to
be sparse and exhibit highly non-regular behavior with pos-
sibly multiple bursts. High-entropy streams are dense and
less “bursty”. Finally, for each entity in one language we



pattern 1 pattern 2 pattern 3 pattern 4

давос (davos) спасск (spassk) мушараф (musharraf) kerviel
switzerland 0.72 spassky 0.5455 musharraf 0.7508 кервьель (kerviel) 0.8803
berlusconi 0.6667 fischer 0.52 pakistan 0.6199 хабаш (khabash) 0.7217
forum 0.6250 soldiers 0.367 rawalpindi 0.5006 сосьете (societe) 0.5652
ledger 0.4615 iceland 0.2051 bhutto 0.4771 женераль (generale) 0.5652

Table 2: Examples of mined entities with correlated bursts

used our method to identify and rank the top 20 most simi-
lar entities in the other language, according to the score for
the temporal correlation of bursts. We performed the same
procedure with the two state-of-the-art methods for mining
transliterations (referred to as PC [19] and CS [17], which for
each selected entity determined the top 20 ranked candidate
transliterations as well. We then evaluated the accuracy of
our method and the baselines with respect to the task of
finding transliterations. The accuracy of transliteration is
measured by the Mean Reciprocal Rank (MRR) measure,
which takes into account the rank of the correct transliter-
ation in the list of candidate transliterations. For a set of n
named entities E1, E2, . . . , En and their transliteration can-
didates, MRR is defined according to the rank of the correct
transliteration ri, i = 1, . . . , n in the list of candidates:

MRR = 1/n
n
∑

i=1

1/ri

The upper bound of MRR is 1, which corresponds to the
case when for each named entity its correct transliteration
is consistently top-ranked in the candidate list. Compari-
son of the performance of baselines and our method for the
transliteration task is presented in Table 3.
In order to determine its relative influence on the over-

all performance of the method, we evaluated the first stage
of the method (no temporal gaps allowed) separately (col-
umn 5 in Table 3) and in combination with the second stage
(column 2 in Table 3).
Several important observations can be made based on the

analysis of Table 3.

1. A combination of MMPP and Dynamic Programming
has better performance than using MMPP without al-
lowing any temporal gaps, which indicates the impor-
tance of allowing temporal flexibility in detecting cor-
related bursts of the Web textual streams;

2. Our method (MMPP+DP) outperforms both baselines
in case of low-entropy (more “bursty”) entities. How-
ever, the performance of our method decreases in other
entropy categories. In general, our method performs
better than CS in all entropy categories and better
than PC for low-entropy entities. It can be expected
that PC performs better for transliteration of less“bursty”
entities, since it focuses on the overall correlation as a
similarity feature, whereas our method uses bursts as
primary signals;

3. Overall, for the task of finding transliterations, our
method clearly outperforms one baseline and has com-
parable performance to the other baseline.

Thus, the experimental results support our intuition that
for low-entropy entities the temporal correlation of bursts is
a more effective signal for discovering transliterations than

the overall correlation coefficient. Therefore, for the task of
unsupervised detection of transliteration pairs, depending
on the entropy of the stream of entity mention counts, our
method can be used in conjunction with the Pearson corre-
lation coefficient to achieve the best overall performance.

8. CONCLUSIONS AND FUTUREWORK
In this work, we proposed a new two-stage method for

mining named entities with temporally correlated bursts
from Web news streams, which can solve two unique, Web-
specific challenges of this new text mining problem, i.e., the
difference in magnitude of bursts and possible temporal lag
between them. In the first stage of the method, the temporal
behavior of different terms is normalized by modeling them
with the Markov-Modulated Poisson Process, thus address-
ing the first challenge. In the second stage, we propose a dy-
namic programming algorithm to discover correlated bursts
of different terms that can be potentially separated by time
gaps, thus addressing the second challenge. We evaluated
our method with the task of discovering transliterations of
named entities from the Web news streams in different nat-
ural languages. Experimental results indicate that the pro-
posed method can effectively discover named entities with
correlated bursts that are associated with meaningful real-
world events and outperforms two state-of-the-art baseline
methods for mining transliterations of “bursty” named enti-
ties.

Although in this work we focused on the study of min-
ing temporally correlated bursts of named entities in tex-
tual streams, we would like to emphasize that the proposed
method is in fact data independent and general. Hence it
can be potentially applied to the detection of temporally
correlated bursts in any type of data streams. We believe
that a very interesting direction for extending the present
work would be to explore temporal correlations between the
“bursty” entities mined from different types of Web 2.0 data,
such as news and blogs or news and tag data.
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