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Abstract. Recent studies indicate that nearly 75% of queries issued to
Web search engines aim at finding information about entities, which are
material objects or concepts that exist in the real world or fiction (e.g.
people, organizations, products, etc.). Most common information needs
underlying this type of queries include finding a certain entity (e.g. “Ein-
stein relativity theory”), a particular attribute or property of an entity
(e.g. “Who founded Intel?”) or a list of entities satisfying a certain crite-
ria (e.g. “Formula 1 drivers that won the Monaco Grand Prix”). These
information needs can be efficiently addressed by presenting structured
information about a target entity or a list of entities retrieved from a
knowledge graph either directly as search results or in addition to the
ranked list of documents. This tutorial provides a summary of the recent
research in knowledge graph entity representation methods and retrieval
models. The first part of this tutorial introduces state-of-the-art meth-
ods for entity representation, from multi-fielded documents with flat and
hierarchical structure to latent dimensional representations based on ten-
sor factorization, while the second part presents recent developments in
entity retrieval models, including Fielded Sequential Dependence Model
(FSDM) and its parametric extension (PFSDM), as well as entity set
expansion and ranking methods.

1 Introduction

Search engine users often try to find concrete or abstract objects (e.g. people,
organizations, scientific papers, products, etc.) rather than documents and are
willing to express such information needs more elaborately than with a few
keywords [13]. In particular, according to the recent studies [37, 51, 69], 3 out
of every 4 queries submitted to the Web search engines either contain entity
mentions or aim at finding information about entities. Most of these queries fall
into the following four major categories:

1. Entity search queries: queries aimed at finding a specific entity either by
its name (e.g. “Ben Franklin”, “Einstein relativity theory”) or description
(e.g. “England football player highest paid”);

2. Entity attribute queries: queries aimed at finding an attribute or property
of a given entity (e.g. “mayor of Berlin”);



3. List search queries: descriptive queries aimed at finding multiple entities
(e.g. “U.S. presidents since 1960”, “animals lay eggs mammals”, “Formula
1 drivers that won the Monaco grand prix”);

4. Questions: natural language questions aimed at finding particular entities
(e.g. “for which label did Elvis record his first album?”), entity attributes (e.g.
“what is the currency of the Czech republic”) or relations between entities
(e.g. “which books by Kerouac were published by Viking Press?”).

The information needs underlying such queries are much more efficiently ad-
dressed by directly presenting the target entity or a list of entities (potentially,
along with an entity card containing entity image and/or short description) than
a traditional ranked list of documents, which contain mentions of these entities.
Implementing this functionality in search systems requires comprehensive repos-
itory of information about entities as well as the methods for retrieving and
ranking entities in response to keyword queries. In this tutorial, we focus on
entity information repositories in the form of knowledge graphs.

1.1 Knowledge Graphs

Recent successes in the development of Web-scale information extraction meth-
ods have resulted in the emergence of a number of large-scale entity-centric infor-
mation repositories, such as DBpedia1, Freebase2 and YAGO3. These reposito-
ries adopt a simple data model based on subject-predicate-object (SPO) triples,
in which a subject is always an entity, an object is either another entity, string
literal or a number and a predicate designates the type of relationship between
subject and object (e.g. bornIn, hasGenre, isAuthorOf, isPCmemberOf etc.).
An entity is typically designated by a Uniform Resource Identifier (URI) (e.g. a
URL in the case of DBpedia, which can be used to look up aggregated structured
information about each entity on-line) and can be any concept that exists in the
real world or fiction (e.g. person, book, color, etc.). A large number of SPO
triples can be conceptualized as a directed labeled multi-graph (often referred to
as a knowledge graph), in which the nodes correspond to entities and the edges
denote typed relationships between entities.

Entities can be linked to other entities in different knowledge bases (e.g. an
entity in DBpedia can be linked to an entity in Freebase). Cross-linked entities in
DBpedia, Freebase and YAGO form the core of Linked Open Data (LOD) cloud4

(also referred to as the Web of Linked Data or the Web of Data [40]), a giant
distributed knowledge graph. As of 2014, the LOD cloud consisted of over 60
billion RDF triples in over 1000 interlinked knowledge graphs representing a wide
range domains, from media and entertainment to e-government and science. The
LOD cloud is continuing to grow as more and more Web resources are providing

1 http://dbpedia.org
2 http://freebase.com
3 http://yago-knowledge.org
4 http://lod-cloud.net



linked meta-data records in the form of RDF triples along with the traditional
human-readable textual content.

1.2 Entity retrieval from knowledge graphs

The scale and diversity of knowledge stored in the Web of Data and the entity
centric nature of knowledge graphs makes them perfectly suited for addressing
information needs aimed at finding entities rather than documents. This scenario
gives rise to Ad-hoc Entity Retrieval from Knowledge Graphs (ERKG). ERKG
is a unique and challenging Information Retrieval (IR) problem. In particular,
ERKG gives rise to two fundamental research questions:

1. Designing entity representations that capture important aspects
of semantics of both the entities and their relations to other enti-
ties: although ERKG is similar to traditional ad-hoc document retrieval or
Web search in that it assumes unstructured textual queries, a fundamental
difference between these two retrieval tasks is that the units of retrieval in
case of ERKG are structured objects (entities) rather than documents and
the “collection” is one or several knowledge graphs. While the structure of
knowledge repositories is perfect for answering structured queries based on
graph patterns, it is not suitable for keyword queries. This results in addi-
tional challenges related to creating entity representations that are suitable
for traditional IR models;

2. Developing accurate and efficient retrieval models: since ERKG in-
volves matching unstructured queries with relevant structured objects, query
understanding in this scenario involves not only accurate recognition of the
key query concepts (terms and phrases) and determining their relative im-
portance, but also matching these concepts with the correct elements of
structured entity semantics of relevant entities encoded in knowledge graphs.

Next, we provide a brief overview of the recent work in entity retrieval from
documents, entity retrieval using structured queries over triple stores and re-
trieval from graph databases, the three research directions most closely related
to ERKG, as well as outline the relations of ERKG to other IR tasks.

2 History and relation to other retrieval tasks

ERKG is historically related to several other information access scenarios involv-
ing entities, graphs and knowledge graphs, such as entity retrieval, retrieval from
RDF triple stores using structured queries and retrieval from graph databases.

2.1 Entity retrieval

Before the emergence and widespread popularity of knowledge graphs, several
evaluation initiatives within TREC and INEX conferences introduced the prob-
lem of ad-hoc entity retrieval [9], which is focused on retrieving named entities



embedded in documents. Entity retrieval tasks introduced by these initiatives var-
ied from retrieving Wikipedia articles that match a keyword query to retrieving
named entities embedded in textual documents or Web pages.

The Entity track at TREC 2009-2011 [10, 12] featured related entity finding
and entity list completion tasks. The goal of the related entity finding task [18, 57]
is to retrieve and rank related entities given a structured XML query specifying
an input entity, the type of related entities and the relation between the input and
related entities in the context of a given document collection. Expert finding [7]
is a special case of related entity finding task in the context of enterprise search,
which assumes specific types of relations (e.g. expert in), as well as specific input
(e.g. area of expertise) and related entities (e.g. employee). The goal of entity list
completion task is to find entities with common properties given some example
entities.

The Entity Ranking track at INEX 2008-2010 (INEX-XER) [26, 28, 29] fea-
tured similar tasks, with the key difference that specific type of the target en-
tities, rather than specific relations between the target and input entities was
provided. The goal of the entity ranking task is to return a ranked list of entities,
in which each entity is associated with a Wikipedia page and a set of Wikipedia
categories designating the entity type, given a structured XML query that con-
sists of the query keywords along with a set of target entity Wikipedia categories.
Besides the text of Wikipedia articles, the methods proposed to address this task
[8, 9, 45, 44, 27], leveraged diverse metadata provided by Wikipedia, such as cat-
egories, disambiguates and link structure.

The problem of entity retrieval has also been studied in the context of Web
search. Cheng et al. [21] and Nie et al. [64] proposed language modeling-based
methods to retrieve Web objects, which are units of information about people,
products, locations and organizations extracted and aggregated from different
Web sources. Guo et al. [37] proposed a probabilistic approach based on weakly
supervised topic model to detect named entities in queries and identify their most
likely categories (e.g. “book”, “movie”, “music”, etc.) . A method to automati-
cally identify and display relevant actions for actionable Web search queries (e.g.
show exact address and a map for a query “sea world location”) was proposed
by Lin et al. [51].

2.2 Structured queries over triple stores

Information in knowledge graphs, stored in RDF triple stores, can also be ac-
cessed using structured query languages, such as SPARQL Protocol and Re-
cursive Query Language (SPARQL). SPARQL queries consist of RDF triples
with parameters and correspond to knowledge graph patterns. Since their re-
sults are typically unranked and consist of subgraphs of a knowledge graph that
exactly match query patterns, SPARQL queries often fall short of satisfying the
users’ information needs by returning too many or too few results. Furthermore,
in order to be properly utilized, structured query languages require knowledge
of the schema of a given knowledge repository and a certain level of technical
skills, which many ordinary users are unlikely to possess. Several approaches to



question answering over linked data translate natural language questions into
SPARQL queries [77, 75, 81]. A language modeling-based method for ranking
the results of structured SPARQL queries over RDF triple stores proposed by
Elbassuoni et al. [31] first constructs language models (LMs) of both the query
and each sub-graph in query results and then ranks the results based on the
Kullback-Leibler divergence between their corresponding LMs and the query
LM. Elbassuoni and Blanco [30] proposed a method for keyword search over
RDF graphs, which represents RDF triples as documents and returns a ranked
list of RDF subgraphs formed by joining the triples retrieved by individual query
keywords.

2.3 Retrieval from graph databases

Methods for searching graph databases using structured queries [82] as well as
keyword search in relational and graph databases have been extensively stud-
ied in the database community. However, these scenarios are quite different
from ERKG, since keyword search over relational and graph databases returns
a ranked list of non-redundant Steiner trees [2, 43, 54, 1, 41, 33] or sub-graphs
[50], which contain the occurrences of query keywords. Ranking models in graph
database retrieval typically leverage the graph structure by aggregating the
weights of nodes and edges [1], attribute-value statistics [20] or a combination of
these properties with content-based relevance measures from IR, such as TF-IDF
weights [23, 21, 41, 50], probabilistic [20] or language models [64] as well as term
proximity [33].

2.4 ERKG and other IR tasks

ERKG can be combined with [39] or used as an alternative to entity linking
[38], which identifies the mentions of KG entities in a query, in the methods
that utilize knowledge graphs to improve general purpose [25, 56, 74, 79, 80] and
domain-specific [5] ad-hoc document retrieval. Term and concept graphs, such
as ConceptNet [55], are special cases of knowledge graphs, in which the nodes
are words or phrases and the weighted edges represent the strength of semantic
relationship between them. This type of knowledge graphs was also shown to be
effective at improving ad-hoc document retrieval [3, 4, 6, 47, 48].

3 Architecture of ERKG systems

Architecture of an ERKG system, an example of which is shown in Figure 1,
is typically a pipeline that consists of entity retrieval, entity set expansion and
entity ranking components. As can be seen in Figure 1, an ERKG system creates
a structured or unstructured textual representation (i.e. entity document) for
each entity in the knowledge graph (different entity representation schemes are
discussed in detail in Section 4) and maintains an inverted index mapping terms
to the fields of entity documents. In the first stage of the pipeline, an inverted



index is used to retrieve an initial set of entities using structured document
retrieval models (discussed in detail in Section 5). An initial set of entities can
be expanded in the second stage of the pipeline by traversing the knowledge
graph to include related entities (specific methods are discussed in Section 6).
Finally, an initial set of entities along with the entities in the expanded set are
ranked using learning-to-rank methods (discussed in detail in Section 7) in the
last stage of the pipeline.

Fig. 1: Architecture of a typical ERKG system (adopted from [76]).

4 Entity representation

All ERKG methods working with unstructured queries that have been proposed
to this date involve a preprocessing step, in which an entity document is built
for each entity in the knowledge graph. Entity document aggregates information
from all triples, in which the entity is either a subject or an object. Figure 2
illustrates this process.

Since the semantics of entities is encapsulated in the fragment of a knowledge
graph around them (i.e. related entities and literals as well as predicates con-
necting them), it is natural to represent KG entities as structured (multi-field)
documents. In the simplest entity representation method, each distinct predicate
corresponds to one field of an entity document. In this case, each field of entity
document consists of other entity names and literals connected to a given entity
with a predicate that corresponds to this field. Since field importance weights are
the key parameters of all existing models for structured document retrieval, op-
timization of such models for structured entity documents, which have as many
fields as there are distinct predicates, would be infeasible due to prohibitively
large amounts of the required training data.

To create entity documents with manageable number of fields, methods for
predicate folding, or grouping predicates into a small set of predefined categories
corresponding to the fields of entity representations, have been proposed. Neu-
mayer and Balog [11, 62] proposed to represent entities as documents with two



Fig. 2: Creating documents for entities in a fragment of the knowledge graph.

fields: title and content. The title field consists of entity names and literals that
are the objects of the predicates ending with “name”, “label” or “title”, while the
content field combines the objects of 1000 most frequent predicates. This simple
approach combined with boosting of entities from high-quality sources, such as
Wikipedia, demonstrated good results for entity search. Zhiltsov and Agichtein
[83] proposed to aggregate entity names and literals in the object position in two
separate fields (attributes and outgoing links). The resulting entity documents
consist of 3 fields: names (which is similar to the title field in [62]), attributes,
and outgoing links. This entity representation is also effective for entity search,
since it allows to find entities using their attributes and relations to other entities
as queries.

Structured Entity Model [61] creates entity documents with 4 fields (name,
attributes, outgoing relations and incoming relations), an example of which is
shown in Figure 3, while Hierarchical Entity Model [61] combines the advantages
of predicate weighting and predicate folding by organizing the predicates into a
two-level hierarchy of fields. The fields at the top level of the hierarchy correspond
to predicate types, while the fields at the bottom level correspond to individual
predicates. This scheme allows to condition the importance of a given predicate
on its type and associated entity in different ways (e.g. by setting the weight of
a predicate field proportional to its length or predicate popularity).

Zhiltsov et al. [84] proposed a refinement of a 3-field entity document [83]
by adding the categories and similar entity names (names of entities that are
subjects of owl:sameAs predicate with the given entity as an object) fields.
The resulting entity representations with 5 fields (names, attributes, categories,
similar entity names and related entity names) has been shown to be effective
for entity search, list search and question answering [65, 84], since it allows to
find sets of entities using one or several categories they belong to as queries,
in addition to finding entities by their aliases, attributes and relations to other
entities. An alternative entity document scheme with 5 fields (text, title, object,
inlinks, and type) has been proposed by Pérez-Agüera et al. [67].



Fig. 3: Folding predicates corresponding to entity names, attributes, outgo-
ing and incoming links into a 4-field entity document using the approach in
[61] for DBpedia entity http://dbpedia.org/resource/Barack Obama.

A major limitation of the above methods is that they create static entity rep-
resentations, which disregard two fundamental properties of entities. The first
property is that the same entity can appear in different contexts over time (e.g.
entity Germany should be returned for queries related to World War II as well as
2014 Soccer World Cup). The second property is that entity documents change
over time (e.g. entity document Ferguson, Missouri before and after August
2014). To take into account these two properties of entities, Graus et al. [35]
proposed to leverage collective intelligence provided by different sources (e.g.
tweets, social tags, query logs) to dynamically update structured entity docu-
ment and tweak the weights of the fields of those documents, which correspond
to different sources of entity description terms, over time. They found out that
incorporating a variety of sources in creating dynamic entity descriptions allows
to account for changes in entity representations over time and that social tags
are the best performing single entity description source.

5 Entity retrieval

With implicit structure of keyword queries and explicit structure of entity repre-
sentations, it is natural to assume that the accuracy of entity retrieval depends
on the correctness of matching query concepts with different aspects of seman-
tics of relevant entities encoded in their structure. Ambiguity of natural language
can lead to many plausible interpretation of a keyword query, which combined
with many possible projections of those interpretations onto structured entity
representations makes ERKG a challenging IR problem.

While models for retrieving entities from knowledge graphs is the first and
most important stage in the pipelines for many entity retrieval tasks, these mod-
els can also play an important role in other information seeking contexts:



1. they can be used in search systems to allow users to pose complex keyword
queries in order to access and interact with structured knowledge in knowl-
edge graphs and the Web of Data. The main advantage of keyword-based
entity search systems is that they generally do not require users to master
complex query languages or understand the underlying schema of a knowl-
edge graph to be able to interact with it;

2. they can be used to retrieve more accurate and complete initial set of entities
for complex and exploratory entity-centric information needs. This initial
set of entities can be further expanded and/or re-ranked using task-specific
approaches. Alternatively, models for ERKG can pinpoint entities of interest
as the starting points for further interactive exploration of information needs
and knowledge graphs [49, 60];

3. they can be used to supplement the search results obtained using document
retrieval models (e.g. Web search results) with structured knowledge for
the same keyword query [36, 73]. Therefore, ERKG can be considered as a
separate search vertical.

Despite their potentially wide applicability, models that are designed specif-
ically for entity retrieval from knowledge graphs have received limited attention
from IR researchers. As a result, until recently, ERKG methods had to rely ei-
ther on bag-of-words models [11, 61, 62, 76, 83] or on models incorporating term
dependencies to retrieve structured entity documents for keyword queries.

5.1 Bag-of-words models for structured document retrieval

Mixture of Language Models (MLM) [66] and BM25F [71], the most popular
bag-of-words retrieval models for structured document retrieval, are extensions
of probabilistic (BM25 [70]) and language modeling-based (Query Likelihood
[68]) retrieval models to structured documents, respectively. These models are
based on the idea that fields in entity documents encode different aspects of
relevance, but propose different formalizations of this idea. BM25F calculates
the values of standard retrieval heuristics (term frequency, document length) as
a linear combination of their values in different document fields and plugs these
values directly into BM25 retrieval formula to obtain a retrieval score for the en-
tire document. Robertson and Zaragoza [71] demonstrated that this strategy is
superior to simple aggregation of BM25 retrieval scores for individual document
fields. MLM, on the other hand, creates a language model for a structured docu-
ment as a linear combination of language models for individual document fields.
Probabilistic Retrieval Model for Semistructured Data (PRMS) [46] learns a
simple statistical relationship between the intended mapping of query terms and
their frequency in different document fields. Robust estimation of this relation-
ship, however, requires query terms to have a non-uniform distribution across
document fields and is negatively affected by sparsity when structured docu-
ments have a large number of fields. For this reason, PRMS performs relatively
well on collections of documents with a small number of medium to large-size



fields (e.g. movie reviews), but exhibits a dramatic decline in performance on
structured documents with large number of small fields.

The key limitation of all bag-of-words retrieval models is that they do not
account for the dependencies between query terms (i.e. query phrases) and are
unable to differentiate the relative importance of query terms and phrases.

5.2 Retrieval models incorporating term dependencies

Markov Random Field (MRF) retrieval model [58] provided a theoretical foun-
dation for incorporating term dependencies in the form of ordered and unordered
bigrams into retrieval models. MRF considers a query as a graph of dependen-
cies between the query terms and between the query terms and the document.
MRF calculates the score of each document with respect to a query as a linear
combination of potential functions, each of which is computed based on a docu-
ment and a clique in the query graph. Sequential Dependence Model (SDM), the
most popular variant of the Markov Random Field model (shown in Figure 4),
assumes sequential dependencies between the query terms and uses three poten-
tial functions: the one that is based on unigrams and the other two that are based
on bigrams, either as ordered sequences of terms or as terms co-occurring within
a window of the pre-defined size. This parametrization results in the following
retrieval function:

PΛ(D|Q)
rank
= λT

∑
q∈Q

fT (qi, D) +λO
∑
q∈Q

fO(qi, qi+1, D) +λU
∑
q∈Q

fU (qi, qi+1, D)

where the potential function for unigrams is their probability estimate in Dirich-
let smoothed document language model:

fT (qi, D) = logP (qi|θD) = log
tfqi,D + µ

cfqi
|C|

|D|+ µ

The potential functions for ordered and unordered bigrams are defined in a
similar way. SDM has 3 main parameters (λT , λO, λU ), which correspond to the
relative contributions of potential functions for unigram, ordered bigram and
unordered bigram query concepts to the final retrieval score of a document.

Previous experiments have demonstrated that taking into account term de-
pendencies allows to significantly improve the accuracy of retrieval results com-
pared to unigram bag-of-words retrieval models for ad-hoc document retrieval
[42], particularly for longer, verbose queries [14]. The key limitation of SDM is
that it considers the matches of query unigrams and bigrams in different fields
of entity documents as equally important, and thus does not take into account
the structure of entity documents.

5.3 Fielded Sequential and Full Dependence Models

Fielded Sequential Dependence Model (FSDM) [84], which was designed specif-
ically for ERKG, overcomes the limitations of SDM and bag-of-words models



Fig. 4: MRF graph for a 3-term query under the assumption of sequential
dependencies between the query terms.

for structured document retrieval by taking into account both query term depen-
dencies and document structure. The retrieval function of FSDM quantifies the
relevance of entity documents to a query at the level of query concept types: uni-
grams, ordered and unordered bigrams. In particular, each query concept type is
associated with two parameters: concept type importance and the distribution of
weights over the fields of entity documents. This parametrization results in the
following function for scoring each structured entity document E with respect
to a given query Q:

PΛ(E|Q)
rank
= λT

∑
q∈Q

f̃T (qi, E) +λO
∑
q∈Q

f̃O(qi, qi+1, E) +λU
∑
q∈Q

f̃U (qi, qi+1, E)

where f̃T (qi, E), f̃O(qi, qi+1, E) and f̃U (qi, qi+1, E) are the potential functions for
unigrams, ordered and unordered bigrams, respectively. The potential function
for unigrams in case of FSDM is defined as:

f̃T (qi, E) = log

F∑
j=1

wTj P (qi|θjE) = log

F∑
j=1

wTj
tfqi,Ej + µj

cfj
qi

|Cj |

|Ej |+ µj

where F is the number of fields in entity document, θjE is the language model
of field j smoothed using its own Dirichlet prior µj and wj are the field weights
under the following constraints:

∑
j wj = 1, wj ≥ 0; tfqi,Ej is the term frequency

of qi in field j of entity description E; cf jqi is the collection frequency of qi in
field j; |Cj | is the total number of terms in field j across all entity documents in
the collection and |Ej | is the length of field j in E. The potential function for
ordered bigrams in the retrieval function of FSDM is defined as:

f̃O(qi,i+1, E) = log

F∑
j=1

wOj
tf#1(qi,i+1),Ej + µj

cfj
#1(qi,i+1)

|Cj |

|Ej |+ µj



while the potential function for unordered bigrams is defined as:

f̃U (qi,i+1, E) = log

F∑
j=1

wUj
tf#uwn(qi,i+1),Ej + µj

cfj
#uwn(qi,i+1)

|Cj |

|Ej |+ µj

where tf#1(qi,i+1),Ej is the frequency of exact phrase (ordered bigram) qiqi+1 in

field j of entity document E, cf j#1(qi,i+1)
is the collection frequency of ordered

bigram qiqi+1 in field j, tf#uwn(qi,i+1),Ej is the number of times terms qi and
qi+1 co-occur within a window of n words in field j of entity document E,
regardless of the order of these terms. Fielded Full Dependence Model (FFDM)
is an extension of Full Dependence Model [58] to structured documents that is
different from FSDM in that it takes into account all dependencies between the
query terms and not just sequential ones.

In the case of structured entity documents with F fields, FSDM has a total
of 3 ∗ F + 3 parameters (distribution of weights across F fields of entity docu-
ments for unigrams, ordered and unordered bigrams and 3 weights determining
the relative contribution of potential functions for different query concept types
towards the final retrieval score of an entity document). Due to its linearity
with respect to the main parameters (λ and w), the retrieval function of FSDM
lends itself to efficient optimization with respect to the target retrieval met-
ric (e.g. using coordinate ascent, which has demonstrated good performance on
low-dimensional feature spaces with limited training data) [59].

Having separate mixtures of language models with different distributions of
field weights for unigrams, ordered and unordered bigrams gives FSDM the flex-
ibility to adjust the entity document scoring strategy depending on the query
type. For example, the distribution of field weights, in which the matches of
unordered bigrams in the descriptive fields of entity documents (attributes, cat-
egories, related entity names) have higher weights than the matches in the title
fields (names, related entity names), would be more effective for informational
entity queries (i.e. list search, question answering), while giving higher weights
to the ordered bigram matches in the title fields would be more appropriate for
navigational queries (i.e. entity search). Specifically, the accuracy and complete-
ness of retrieval results for a list search query “apollo astronauts who walked on
the moon” is likely to increase when more importance is given to the matches of
the ordered query bigram apollo astronauts and unordered bigram walked moon
in the categories field of entity documents, rather than in the names field, while
giving higher weights to the matches of the same bigrams in the name field is
likely to have the opposite effect. Experimental results [84] on publicly available
benchmarks [11] indicate that additional complexity of FSDM translates into
significant improvements of retrieval accuracy (20% and 52% higher MAP on
entity search queries, 7% and 3% higher MAP on list search queries, 28% and
6% higher MAP on questions, 18% and 20% higher MAP on all queries) over
MLM and SDM, respectively.



Hasibi et al. [39] proposed an extension of FSDM by adding a potential
function that takes into account the linked entities in queries, which improves
MAP by 11% on list search queries and by 16% on questions.

5.4 Parameterized Fielded Sequential and Full Dependence Models

Parametrization of entity retrieval function using distinct sets of field weights
for each query concept type may still lack flexibility in some cases, which is
illustrated by an example query “capitals in Europe which were host cities of
summer olympic games”. Contrary to the assumption of FSDM, different uni-
grams in this query should be projected onto different fields of entity documents
(i.e. “capitals” and “summer” should be projected onto the categories field, while
“Europe” should be projected onto the attributes field). Mapping all these un-
igrams onto the same field of entity documents (either categories or attributes)
is likely to degrade the accuracy of retrieval results for this query.

Parameterized Fielded Sequential Dependence Model (PFSDM) [65] is an
extension of FSDM that provides a more flexible parametrization of entity re-
trieval function by estimating the importance weight for matches of each indi-
vidual query concept (unigram or bigram), rather than each query concept type,
in different fields of entity documents. Specifically, PFSDM uses the same po-
tential functions as FSDM, but estimates wTqi,j , the relative contribution of each

individual query unigram qi, and wO,Uqi,i+1,j
, the relative contribution of each in-

dividual query bigram qi,i+1 (ordered or unordered), which are matched in field
j of structured entity document for entity E towards the retrieval score of E, as
a linear combination of features:

wTqi,j =
∑
k

αUj,kφk(qi, j)

wO,Uqi,i+1,j
=
∑
k

αBj,kφk(qi,i+1, j)

under the following constraints:∑
j

wTqi,j = 1, wTqi,j ≥ 0, αUj,k ≥ 0, 0 ≤ φk(qi, j) ≤ 1

∑
j

wO,Uqi,i+1,j
= 1, wO,Uqi,i+1,j

≥ 0, αBj,k ≥ 0, 0 ≤ φk(qi,i+1, j) ≤ 1

where φk(qi, j) and φk(qi,i+1, j) are the values of the k-th non-negative fea-
ture function for query unigram qi and bigram qi,i+1 in field j of entity document,

respectively. wTqi,j and wO,Uqi,i+1,j
can also be considered as a dynamic projection

of query unigrams qi and bigrams qi,i+1 onto the fields of structured entity
documents. Similar to FFDM, Parameterized Fielded Full Dependence Model
(PFFDM) takes into account all dependencies between the query terms and not



Table 1: Features to estimate the contribution of query concept κ matched
in field j towards the retrieval score of E. Column CT designates the type
of query concept that a feature is used for (UG stands for unigrams, BG
stands for bigrams).

Source Feature Description CT

Collection statistics

FP (κ, j)
Posterior probability P (Ej |w) obtained
through Bayesian inversion of P (w|Ej), as
defined in [46].

UG BG

TS(κ, j)
Retrieval score of the top document ac-
cording to SDM [58], when concept κ is
used as a query and only the jth fields
of entity representations are used as docu-
ments.

BG

Stanford POS Tagger5

NNP (κ) Is concept κ a proper noun (singular or plu-
ral)?

UG

NNS(κ)
Is concept κ a plural non-proper noun? We
consider a bigram as plural when at least
one of its terms is plural.

UG BG

JJS(κ) Is concept κ a superlative adjective? UG

Stanford Parser6
NPP (κ) Is concept κ part of a noun phrase? BG
NNO(κ) Is concept κ the only singular non-proper

noun in a noun phrase?
UG

INT Intercept feature, which has value 1 for all
concepts.

UG BG

just sequential ones. The features that are used by PFSDM and PFFDM to es-
timate the projection of a query concept κ onto the field j of structured entity
document are summarized in Table 1.

As follows from Table 1, PFSDM uses two types of features: real-valued fea-
tures (FP , TS), which are based on the collection statistics of query concepts in
a particular field of entity documents, and binary features (NNP , NNS, JJS,
NPP , NNO), which are based on the output of natural language processing
tools (POS tagger and syntactic parser) and are independent of the fields of
entity documents. The intuition behind the latter type of features is that the
relationship between them and the fields of entity documents can be learned in
the process of estimating their weights. For example, since plural non-proper
nouns typically indicate groups of entities, the weight of the corresponding fea-
ture (NNS) is likely to be higher in the categories field than in all other fields
of entity documents. On the other hand, the NNP feature takes positive values
for the query concepts that are proper nouns and designate a specific entity.
Therefore, the distribution of field weights for this feature is likely to be skewed
towards names, similar entity names and related entity names fields. Unlike
PRMS [46], PFSDM and PFFDM estimate the projections of query concepts
onto the fields of entity documents based on multiple features of different type,
which allows to overcome the issue of sparsity for entity representations with



large number of fields and increase the robustness of estimates of these projec-
tions. In the case of structured entity documents with F fields, PFSDM and
PFFDM have F ∗ U + F ∗ B + 3 parameters in total (F ∗ U feature weights
for unigrams and F ∗ B feature weights for bigrams, where U and B are the
number of features for unigrams and bigrams, and 3 weights determining the
relative contribution of potential functions for each query concept type towards
the final retrieval score of entity document). Similar to FSDM and FFDM, fea-
ture weights can be optimized with respect to the target retrieval metric using
any derivative-free optimization method (e.g. coordinate ascent). Experimental
results [65] on publicly available benchmarks [11] indicate that more flexible
parametrization of entity relevance and feature-based estimation of field map-
ping weights by PFSDM yields significant improvements of retrieval accuracy
(87% and 7% higher MAP on entity search queries, 82% and 12% higher MAP
on questions, 77% and 4% higher MAP on all queries) over PRMS and FSDM,
respectively.

6 Entity set expansion

An initial set of entities retrieved for a given keyword query or a question in
the first stage of entity retrieval process using BM25 [76], BM25F [15, 16, 32, 76],
Kullback-Leibler divergence [8, 9, 34], Mixture of Language Models (MLM) [19,
61, 64, 83], FSDM/FFDM or PFSDM/PFFDM can be expanded in the second
stage with additional entities and entity attributes obtained using the methods
based on SPARQL queries and spreading activation.

6.1 SPARQL queries

Tonon et al. [76] proposed a hybrid entity retrieval and expansion method
that maintains an inverted index for entity documents and a triple store for
entity relations. The method first retrieves an initial set of entities from the
inverted index of flat (non-structured) entity documents using BM25 retrieval
model and expands the initial set of entities with their attributes, neighbor en-
tities and neighbors of neighbor entities found by issuing pre-defined SPARQL
queries to the triple store. Besides general predicates, such as owl:sameAs and
skos:subject, SPARQL queries mostly leverage DBpedia specific predicates,
such as dbpedia:wikilink, dbpedia:disambiguates and dbpedia:redirect.
Expansion entities are evaluated with respect to the original query using Jaro-
Winkler similarity score and the entities, for which the similarity score is below
a given threshold, are filtered out. Original and expansion entities are then re-
ranked based on a linear combination of BM25 and Jaro-Winkler scores. Experi-
ments indicate that, for entity search queries, expansion of the original entity set
retrieved using BM25 by following just owl:sameAs predicates results in 9-11%
increase in MAP. Following dbpedia:redirect and dbpedia:disambiguates

predicates, in addition to owl:sameAs, results in 12-25% increase in MAP. How-
ever, following other general predicates (dbpedia:wikilink, skos:subject, foaf:homepage,



etc.) and looking further into a KG (i.e. expanding with neighbors of neighbor
entities) degrades the initial retrieval results (similar findings were reported in
[6, 48] for term graphs and semantic networks).

6.2 Spreading activation

A general approach based on weighted spreading activation on KGs to expand
the initial set of entities obtained using any retrieval model was proposed in [72].
The SemSets method [22] proposed for list search utilizes the relevance of entities
to automatically constructed categories (i.e. semantic sets) measured according
to structural and textual similarity. This approach combines a retrieval model
(basic TF-IDF retrieval model) with the ranking method based on spreading ac-
tivation over the link structure of a knowledge graph to evaluate the membership
of entities in semantic sets.

7 Entity ranking

Ranking the expanded set of entities is the final stage in ERKG pipeline. In
this section, we provide an overview of recent research on transfer learning,
incorporating latent semantics and ranking entities in document search results.

7.1 Transfer learning

Dali and Fortuna [24] manually converted keyword queries into SPARQL queries
and examined the utility of machine learning methods for ranking the retrieved
entities using ranking SVM. In particular, they used the following types of fea-
tures capturing the popularity and importance of entity E:

– Wikipedia popularity features: popularity of E measured by the statis-
tics of the Wikipedia page for E, such as page length, the number of page
edits and the number of page accesses from Wikipedia logs;

– Search engine popularity features: popularity of E measured by the
number of results returned by a search engine API using the top 5 keywords
from the abstract of the Wikipedia page for E as a query;

– Web popularity features: number of occurrences of entity name in Google
N-grams;

– KG importance features: importance of E measured by the number of
triples, in which E is a subject (i.e. entity node out-degree); the number of
triples, in which E is an object (i.e. entity node in-degree); the number of
triples, in which E is a subject and object is a literal as well as the number
of categories and the sizes of the biggest, smallest, median category that the
Wikipedia page for E belongs to;

– KG centrality features: HITS hub and authority scores and Pagerank of
both the Wikipedia page for E in Wikipedia graph and of entity node in a
KG.



Two experiments were performed using these features. The first experiment
focused on studying the effectiveness of individual features and led to several
interesting conclusions. First, features approximating entity importance as HITS
scores of Wikipedia page corresponding to an entity in Wikipedia graph are
effective for entity ranking, while PageRank and HITS scores of entity nodes in a
knowledge graph are not. Second, Google N-grams are a cheaper proxy for search
engine API in determining entity popularity. The second experiment was aimed
at assessing the feasibility of transfer learning for entity ranking. Specifically, the
ranking model was first trained on DBpedia entities and then applied to rank
YAGO entities. The results of this experiment indicate that, in general, ranking
models for different knowledge graphs are non-transferable, unless they involve
a large number of features. The largest drops of performance were observed
when the ranking model was trained on KG-specific features, which suggests
that different KGs have their own peculiarities reflecting the decisions of their
creators, which are non-generalizable.

7.2 Leveraging Latent Semantics in Entity Ranking

Numerous approaches [17, 53, 52, 78] to model latent semantics of entities in KGs
have been proposed in recent years. RESCAL [63], a tensor factorization-based
method for relational learning, obtains low-dimensional entity representations by
factorizing a sparse tensor X of size n×n×m, where n is the number of distinct
entities and m is the number of distinct predicates in a KG. Binary tensor X
is constructed in such a way that each of its frontal slices corresponds to a
sparse adjacency matrix of a subgraph of a KG involving a particular predicate.
If entities i and j are connected with predicate k in a KG, then Xijk = 1,
otherwise Xijk = 0.

Fig. 5: Representation of a KG as a binary tensor. Each frontal slice corre-
sponds to an adjacency matrix of a subgraph of a KG involving a particular
predicate.

RESCAL factorizes X in such a way that each frontal slice Xk is approxi-
mated with a product of three matrices:

Xk ≈ ARkAT , for k = 1, . . . ,m



where A is a n× r matrix, in which the ith row corresponds to an r-dimensional
latent representation (i.e. embedding) of the ith entity in a KG (r is specified by
a user) and R is an interaction tensor, in which each frontal slice Rk is a dense
r × r square matrix that models the interactions of latent components of entity
representation the k-th predicate. Figure 6 shows a graphical representation of
such factorization.

Fig. 6: Graphical representation of knowledge graph tensor factorization us-
ing RESCAL.

A and Rk are computed by solving the following optimization problem:

min
A,R

1

2

(∑
k

‖Xk −ARkAT ‖2F

)
+ λ

(
‖A‖2F +

∑
k

‖Rk‖2F

)
using an iterative alternating least squares algorithm.

Zhiltsov and Agichtein [83] utilized KG entity embeddings obtained using
RESCAL to derive structural entity similarity features that were used in a ma-
chine learning method for ranking the results of entity retrieval models. Specif-
ically, their approach re-ranked the retrieval results of MLM using Gradient
Boosted Regression Trees in conjunction with term-based and structural fea-
tures. Term-based features include query length and query clarity, entity retrieval
score using MLM with uniform field weights as well as bigram relevance scores
for each of the fields in 3-field entity document. Structural features are based
on distance metrics in the latent space between embedding of a given entity
and embeddings of the top-3 entities retrieved by the baseline method (MLM).
Experiments indicate that a combination of term-based and structural features
improves MAP, NDCG and P@10 by 5-10% relative to MLM on entity search
queries.

7.3 Ranking entities in search results

An alternative method to retrieving and ranking entities directly from a KG
was proposed by Schuhmacher et al. [73]. Their method is based on linking
entity mentions in top retrieved documents to KG entities and ranking the linked



Table 2: Features for ranking entities linked to entity mentions in retrieved
documents.

Mention Features

MenFrq number of entity occurrences in top documents
MenFrqIdf IDF of entity mention

Query-Mention Features

SED normalized Levenshtein distance
Glo similarity based on GloVe embeddings
Jo similarity based on JoBimText embeddings

Query-Entity Features

QEnt is document entity linked in query
QEntEntSim is there a path in KG between document and query entities
WikiBoolean is entity Wikipedia article retrieved by query using Boolean model

WikiSDM SDM retrieval score of entity Wikipedia article using query

Entity-Entity Features

Wikipedia is there a path between two entities in DBpedia KG

entities using ranking SVM in conjunction with mention, query-mention, query-
entity and entity-entity features summarized in Table 2.

Using this method, entities can be retrieved and ranked for any free-text Web-
style queries (e.g. “Argentine British relations”), which aim at heterogeneous
entities with no specific target type, and presented next to traditional document
results.

a) ClueWeb12 b) Robust04

Fig. 8: Ranking performance of each feature on different collections.

Analysis of ranking performance of each individual feature (summarized in
Figure 8) resulted in several interesting conclusion. First, the strongest features
are the IDF of entity mention (MenFrqIdf) and SDM retrieval score of entity



Wikipedia page (WikiSDM). Second, all context-based query-mention features
(indicated by prefix C ) perform worse than their non-context counterparts (in-
dicated by prefix M ). Third, other query-entity features based on DBpedia
(QEnt and QEntEntSim) perform worse than WikiSDM, but better than other
mention-based features. In addition to these finding, feature ablation studies re-
vealed that DBpedia-based features have positive, but insignificant influence on
performance, while Wikipedia-based features show strong and significant influ-
ence. Furthermore, authoritativeness of entities marginally correlates with their
relevance, since entities that have high PageRank scores are typically very gen-
eral and are linked to by many other entities.

8 Conclusion

The past decade has witnessed the emergence of numerous large-scale publicly
available (e.g. DBpedia, Wikidata and YAGO) and proprietary (e.g. Google’s
Knowledge Graph, Facebook’s Open Graph and Microsoft’s Satori) knowledge
graphs. However, we only begin to understand how to effectively access and
utilize vast amounts of information stored in them. This tutorial is an attempt
to summarize and systematize the published research related to accessing in-
formation in knowledge graphs. Specific goals of this tutorial are two-fold. On
one hand, we outlined a typical architecture of systems for searching entities in
knowledge graphs and reported the best practices known for each component of
those systems, in order to facilitate their rapid development by practitioners. On
the other hand, we summarized the recent advances and main ideas related to
entity representation, retrieval and ranking as well as entity set expansion with
an intent of helping information retrieval and machine learning researchers to
initiate their own research into these directions and produce exciting discoveries
in many years to come.
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