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Abstract 

We propose Latent Class Allocation (LCA) and Discriminative Labeled Latent Dirichlet Allocation (DL-LDA), two 

novel interpretable probabilistic latent variable models for automatic annotation of clinical text. Both models 

separate the terms that are highly characteristic of textual fragments annotated with a given set of labels from other 

non-discriminative terms, but rely on generative processes with different structure of latent variables. LCA directly 

learns class-specific multinomials, while DL-LDA breaks them down into topics (clusters of semantically related 

words). Extensive experimental evaluation indicates that the proposed models outperform Naïve Bayes, a standard 

probabilistic classifier, and Labeled LDA, a state-of-the-art topic model for labeled corpora, on the task of 

automatic annotation of transcripts of motivational interviews, while the output of the proposed models can be 

easily interpreted by clinical practitioners. 

1. Introduction 

Annotation or assignment of codes (labels) from a predefined codebook to fragments (entire documents or their 

parts) of clinical text is an integral part of medical practice and qualitative research. Such codes can be viewed as 

semantic labels, or high-level summaries (abstractions) of the raw textual data. Besides cataloging, such abstractions 

can facilitate the analysis of clinical text in general and clinical interview transcripts in particular. In this work, we 

focus on the transcripts of motivational interviews with obese adolescents conducted at a Pediatric Prevention 

Research Center (PPRC). 

Childhood and adolescent obesity is a serious public health problem. Recent national data1 indicate that one in four 

children aged 2-5 years are overweight or obese. The trend of childhood obesity continues into adolescence – as of 

2012, 18% of all adolescents and 23.7% of African American adolescents are obese1. Adolescents who are obese are 

likely to be obese as adults and have a greater risk of heart disease, type 2 diabetes, stroke, cancer, and 

osteoarthritis2. Therefore, childhood and adolescence are critical periods for healthy eating and physical activity 

interventions to establish healthy weight gain trajectories. To design such interventions, PPRC clinicians conduct 

interviews with children and their caregivers grounded in the principles of Motivational Interviewing (MI)3, an 

evidence-based communication technique to increase intrinsic motivation and self-efficacy for behavior change. 

Detailed analysis of those interviews aims at identifying clinicians' communication strategies that are effective in 

triggering patient's motivational statements for the behavioral changes that will ultimately lead to weight loss. 

Recent literature reviews of mechanisms of effect in MI4 have concluded that clients’ motivational statements about 

their own desire, ability, reasons and need for or commitment to change (or “change talk”) consistently predict 

actual behavior change5, as long as 34 months later6. Strategies to elicit motivational statements are typically 

identified via retrospective analysis of past interview transcripts. Part of this analysis involves assignment of codes 

to patient replies during the interviews. Analyzing sequences of assigned codes allows clinicians to better 

understand the patient’s thought process during the course of the interviews, without having to wade through entire 

transcripts over and over again. Such understanding, in turn, leads to further specification of the mechanisms of 

effect for intervention models, which can then be used to refine theory and guide clinical practice7. 

Annotation of interview transcripts has traditionally been performed manually by trained coders, which is a tedious 

and resource intensive process. Therefore, methods that can efficiently and accurately distinguish the nuances of 

patient-provider communication can have a tremendous positive impact on many areas of clinical practice and 

research. Inferring psychological state of the patients during clinical interviews using only lexical content of their 

transcriptions is a challenging task for several reasons. First, many important indicators of emotions such as 

gestures, facial expressions and intonations are lost during the transcription process. Second, some utterances from 

patients during the interview may be too short and lack sufficient context for accurate classification. Furthermore, 

patients come from a variety of social, cultural, and educational backgrounds and their language is therefore quite 



  

different. This problem is exacerbated when the interviews are conducted with children and adolescents, since 

children, in general, tend to often use incomplete sentences and frequently change subjects. 

Automating the annotation of clinical documents is one of the fundamental problems in medical informatics, which 

can have tremendous implications for clinical practice. It falls under a general class of classification problems, 

which are typically addressed using supervised machine learning methods (or classifiers). Given a set of pre-

classified data samples (called the training set) represented as a feature vector, in which each feature is the value of a 

feature function calculated based on a data sample, these methods learn the mapping from feature vectors to their 

classifications. Once learned, such mapping can be applied to classify new, unlabeled data samples (called the 

testing set). Classification problems arise in many different domains, from analysis of scientific literature8 and on-

line reviews9 to digital forensics10 and medical informatics11,12. Performance of different classifiers (including Naïve 

Bayes13) on most common text classification tasks has been examined in detail in previous work14,15. However, 

biomedical context places additional restriction of interpretability on machine learning models, as they are not only 

required to make correct classification decisions, but to also allow humans to easily understand how they arrived at 

these decisions. Interpretability of classification models is particularly important for psychological studies, such as 

Motivational Interviewing, since each class needs to have distinct interpretation (i.e. clearly correspond to a certain 

communication or behavior type). Furthermore, annotation models for these studies often need to be manually 

corrected. While the effectiveness of non-interpretable classifiers leveraging external resources, such as concepts 

from the Unified Medical Language System (UMLS) or clusters derived from a large external corpus, has been 

previously studied16, there is still a need for designing interpretable models for annotating clinical interviews for 

behavioral studies, which typically contain very limited, domain-specific terminology and thus render general 

purpose medical lexicons ineffective for this task. 

In this work, we focus on the problem of designing an interpretable model for automatic annotation of utterances in 

clinical interview transcripts with fine-grained semantic class (such as behavior type) and propose two new latent 

variable probabilistic models, Latent Class Allocation and Discriminative Labeled Latent Dirichlet Allocation as 

effective solutions to this problem. Both methods model how human annotators approach classification using 

probabilistic generative process. In particular, during training, they learn to distinguish the vocabularies that are 

highly indicative of the given classes from the general and non-discriminative terms via probabilistic assignment of 

latent variables to each term in the training corpus. The learned vocabularies in the form of multinomial distributions 

(or language models) are used to probabilistically classify new textual fragments and are easily interpretable by 

clinical practitioners. Although all experiments in this paper were conducted using clinical conversation data, the 

proposed methods can be applied to annotate any other type of clinical text. 

2. Methods 

2.1 Classes 

As a golden standard for all experiments in this work, we used a sample of obesity Motivational Interview 

transcripts, in which patient utterances were manually annotated by human coders according to the "Minority Youth 

Sequential Code for Observing Process Exchanges" (MY-SCOPE)17 coding manual. Each utterance in the golden 

standard is labeled with one class. Among others, MY-SCOPE defines the following five classes of patient 

utterances, which correspond to major target patient behaviors clinicians were focused on when conducting obesity 

Motivational Interviews: 

 CL-: negative commitment language; 

 CL+: positive commitment language; 

 CT-: negative change talk; 

 CT+: positive change talk; 

 AMB: ambivalence. 

Commitment language (CL) is statements about patients’ intentions or plans for enacting weight related changes, 

which are positive, when supportive of behavior change, and negative, when against behavior change. Change talk 

(CT) corresponds to utterances that describe patients’ own desires, abilities, reasons, and need for adhering to weight 

loss recommendations and are also positive, when supportive of behavior change, and negative, when against 

behavior change. Ambivalent utterances (AMB) are change talk or commitment language statements that contain a 



  

combination of positive and negative sentiments about changing one’s behavior. Examples of utterances for each 

class are presented in Table 1. 

Table 1. Examples of utterances representing the language and behavior types considered in this work. 

Category Example 

CL- I eat a lot of junk food. Like, cake and cookies, stuff like that. 

CL+ Well, I've been trying to lose weight, but it really never goes anywhere. 

CT- It can be anytime; I just don't feel like I want to eat (before) I'm just not hungry at all. 

CT+ Hmm. I guess I need to lose some weight, but you know, it's not easy. 

AMB Fried foods are good. But it's not good for your health. 

In the following sections, we present the classifiers used for the task of differentiating the above classes and report 

their performance in terms of standard evaluation metrics. 

2.2 Features and baselines 

We use standard bag-of-words feature generation framework, in which a predefined set of lexical features (or 

vocabulary), V = {w1,…,wN}, can appear in a given textual fragment. For example, one such feature could be the 

number of times a word (unigram) "exercise" appears in a given textual fragment. This way each textual fragment f 

is represented as a feature vector (𝑛𝑤1,𝑓
, …,𝑛𝑤𝑁,𝑓

 ), where 𝑛𝑤,𝑓 is the number of times feature (word) w occurs in f. 

To determine the best classification model for this task, in the following sections, we experimentally compare 

standard supervised machine learning methods, such as Naïve Bayes13 and Labeled Latent Dirichlet Allocation18, 

with our proposed probabilistic classification models.  

2.2.1 Naïve Bayes 

Naïve Bayes (NB) is a standard probabilistic classifier, which annotates a given textual fragment f = {𝑤1,…,𝑤𝑁𝑓
}, 

consisting of Nf  words, with a class c*, such that c* = arg maxc p(c|f), where p(c|f) is estimated by applying the 

Bayes’ rule as follows: 

𝑝(𝑐|𝑓) =
𝑝(𝑓|𝑐)𝑝(𝑐) 

𝑝(𝑓)
 ∝ 𝑝(𝑓|𝑐)𝑝(𝑐) 

In order to estimate p(f|c), Naïve Bayes classifier makes an assumption about conditional independence of features 

given c, the class of fragment f:  

𝑝(𝑓|𝑐) = ∏ 𝑝(𝑤𝑖|𝑐)
𝑛𝑤𝑖,𝑓

𝑁𝑓

𝑖=1

 

Despite its relative simplicity, NB has been experimentally demonstrated to be one of the most effective text 

classification algorithms ever created. In this work, we used a standard implementation of Multinomial NB 

algorithm from the Weka text mining toolkit. 

2.3 Probabilistic models  

We propose Latent Class Allocation (LCA) and Discriminative Labeled Latent Dirichlet Allocation (DL-LDA), two 

novel probabilistic generative latent variable models for the task of automatic coding of clinical interview 

transcripts, and compare their performance with Naïve Bayes and Labeled Latent Dirichlet Allocation (L-LDA), a 

state-of-the-art probabilistic model for labeled data, on the task of annotating utterances in clinical text. LCA 

associates only one latent variable m with each word, which determines its type (whether a word is general or 

characteristic of a certain class). DL-LDA is an extension of L-LDA that makes a different set of assumptions about 

the structure of latent variables. Rather than directly associating each word with a latent variable determining its 

topic for a certain class, DL-LDA, similar to LCA, first associates with each word a latent variable, which 

determines whether a word is general or characteristic of a certain class and, only in the second case, associates it 

with another latent variable z, determining its class-specific topic. Thus, DL-LDA can be viewed as a more 

structured version of Labeled LDA. 



  

2.3.1 LCA  

LCA models each textual fragment f labeled with class cf as a set of alternating draws from a background 

multinomial ϕbg that is drawn from a symmetric Dirichlet prior βbg and a multinomial ϕcls specific to cf that is drawn 

from a symmetric Dirichlet prior βcls. The proportion of words drawn from ϕbg and ϕcls is controlled by a binomial 

distribution λf. LCA generates annotated textual fragments according to the following probabilistic process: 

1. draw λf ~ Beta(γ), a binomial distribution controlling the mixture of words in f drawn from the background 

and class-specific multinomials 

2. for each word position i of Nf  in f: 

a) draw Bernoulli switching variable mf,i ~ λf  

b) if mf,i = bg:  

- draw a word wf,i ~ ϕbg 

c) if mf,i = cls:  

- draw a word wf,i ~ 𝜙𝑐𝑙𝑠,𝑐𝑓  

The generative process of LCA in plate notation is presented in Figure 1a. 

 

 

 

 

 

 

 

 

 

 

a) LCA    b) L-LDA   c) DL-LDA 

Figure 1. Generative processes of the proposed and baseline latent variable models in plate notation. 

Annotation of textual fragments in the testing set with LCA is done using class-specific multinomials ϕcls (or p(w|c)) 

determined as a result of posterior inference on the training set to derive p(c|w), distributions showing how 

indicative each word w is for each class c:  

𝑝(𝑐|𝑤) =
𝑝(𝑤|𝑐)𝑝(𝑐)

𝑝(𝑤)
 

where 𝑝(𝑐) =
𝑛𝑓,𝑐

𝑀
 (𝑛𝑓,𝑐 is the number of interview fragments labeled with class c and M is the total number of 

fragments) and p(w) is a probability of word w in a collection language model estimated using maximum likelihood. 

p(c|w) are then used to classify f according to the following formula:  

c* = arg maxcp(c|f) = ∏ 𝑝(𝑐|𝑤𝑖)
𝑛𝑤𝑖,𝑓

𝑁𝑓

𝑖=1
 

2.3.3 L-LDA 

L-LDA directly associates a latent variable z with each word that determines its assignment to a topic specific to cf. 

It is state-of-the-art topic model for labeled textual collections that has been shown to outperform standard 

classifiers, such as SVM, for the task of multi-class classification18. The generative process of L-LDA in plate 

notation is presented in Figure 1b. L-LDA along with NB is used as a baseline in our experimental evaluation. 



  

2.3.2 DL-LDA  

DL-LDA models each textual fragment f labeled with class cf as a mixture of the background topic ϕbg drawn from a 

symmetric Dirichlet prior βbg and Kcls topics drawn from a uniform Dirichlet prior βcls. DL-LDA generates the 

textual fragments in clinical interviews according to the following probabilistic process: 

1. draw λf  ~ Beta(γ), a binomial distribution controlling the mixture of background and class-specific topics 

for f 

2. draw 𝜃𝑓
𝑐𝑙𝑠 ~ Dir(𝛼𝑐𝑙𝑠), a distribution of class-specific topics for f 

3. for each word position i of Nf in f: 

(a) draw Bernoulli switching variable mf,i ~ λf 

(b) if mf,i = bg:  

        - draw a word wf,i ~ ϕbg 

(c) if mf,i = cls:  

        - draw a topic zf,i ~ 𝜃𝑓
𝑐𝑙𝑠 

        - draw a word wf,i ~ 𝜙𝑧𝑓,𝑖

𝑐𝑙𝑠,𝑐𝑓
 

The generative process of DL-LDA in plate notation is presented in Figure 1c. Classification using DL-LDA is 

performed by first deriving a class-specific multinomial p(w|c) per each class c from class-specific topics ϕcls,cf (or 

p(w|c, z)) by marginalizing over z: 

𝑝(𝑤|𝑐) = ∑ 𝑝(𝑤|𝑐𝑖 , 𝑧)

𝐾𝑐𝑙𝑠

𝑧=1

 

and then using class-specific multinomials to directly classify f , similar to LCA. 

We would like to note that the inference algorithm for LCA, L-LDA and DL-LDA is adaptable to distributed 

environment and therefore the proposed methods can be scaled up to very large datasets19,20. 

3. Results  

The dataset used for experiments in this work consists of 2966 manually annotated fragments of interview 

transcripts. The distribution of the number of samples per each class is shown in Table 2.  

Table 2. Number of samples per class in experimental dataset. 

Class # Samples % 

CL- 73 2.46 % 

CL+ 875 29.50 % 

CT- 278 9.37 % 

CT+ 1657 55.87 % 

AMB 83 2.80 % 

Total 2966 100 % 

The dataset was first pre-processed by removing very frequently occurring terms (that occur in more than 25% of 

textual fragments). We also used the following pre-processing methods to study their effect on classification 

performance:  

 RAW: no preprocessing, original dataset is used;  

 STEM: Porter stemmer is applied to each term in the dataset to eliminate morphological variation;  

 STOP: stopwords are removed, but stemming is not applied; 



  

 STOP-STEM: Porter stemmer is applied to each term in the dataset and stopwords are removed.  

For all experiments we used randomized 5-fold cross-validation. The Gibbs sampler for posterior inference of 

parameters of LCA, L-LDA and DL-LDA was run for 1000 iterations. Classification performance of NB, L-LDA, 

LCA and DL-LDA on the task of differentiating 5 language categories when experimental dataset is pre-processed 

with different methods is summarized in Tables 3, 4, 5 and 6, respectively.  

Table 3. Performance of Naïve Bayes using different pre-processing methods. Best result for each 

performance metric is highlighted in boldface. 

Method Recall Precision F1 score 

RAW 0.522 0.523 0.506 

STEM 0.534 0.534 0.518 

STOP 0.511 0.526 0.510 

STOP-STEM 0.510 0.519 0.506 

Table 4. Performance of Labeled Latent Dirichlet Allocation using different pre-processing methods. Best 

result for each performance metric is highlighted in boldface. 

Method Recall Precision F1 score 

RAW 0.537 0.530 0.480 

STEM 0.544 0.540 0.474 

STOP 0.530 0.520 0.478 

STOP-STEM 0.538 0.517 0.475 

Table 5. Performance of Latent Class Allocation using different pre-processing methods. Best result for each 

performance metric is highlighted in boldface. 

Method Recall Precision F1 score 

RAW 0.543 0.534 0.537 

STEM 0.557 0.542 0.549 

STOP 0.541 0.508 0.520 

STOP-STEM 0.543 0.515 0.525 

Table 6. Performance of Discriminative Labeled Latent Dirichlet Allocation using different pre-processing 

methods. Best result for each performance metric is highlighted in boldface. 

Method Recall Precision F1 score 

RAW 0.591 0.533 0.537 

STEM 0.586 0.515 0.527 

STOP 0.560 0.504 0.508 

STOP-STEM 0.557 0.492 0.498 

Table 7. Summary of the best performance of different methods for the task of annotation of 5 original 

language types. Best result for each performance metric is highlighted in boldface. 

Algorithm Recall Precision F1 score 

Naïve Bayes 0.522 0.523 0.506 

LCA 0.543 0.534 0.537 

L-LDA 0.537 0.530 0.480 

DL-LDA 0.591 0.533 0.537 



  

Since classification accuracy of DL-LDA is dependent on the number of per-class topics, which is a parameter that 

needs to be specified a priori, we first optimized it with respect to F1 score. Figure 2 indicates that the optimal 

classification results for DL-LDA in combination with different pre-processing methods are achieved when the 

number of topics is small (2 or 3 in most cases). 

 

Figure 2. F1 score of DL-LDA by varying the number of topics and in combination with different pre-

processing methods on the task of classification of all language categories. 

The best results for each proposed model and the baselines are summarized and compared in Table 7, while the per-

class breakdown of the best results for all models is provided in Table 8.  

Table 8. Summary of the best per class performance in terms of F1 score of different classifiers for the task of 

distinguishing 5 original language types. Best result for each class is highlighted in boldface. 

Algorithm 1 2 3 4 5 

Naïve Bayes 0.129 0.329 0.164 0.691 0.170 

LCA 0.094 0.437 0.223 0.682 0.162 

L-LDA 0.025 0.252 0.066 0.708 0.128 

DL-LDA 0.025 0.396 0.114 0.729 0.061 

In the second set of experiments, we aggregated the interview fragments labeled as positive and negative 

commitment language (CL+ and CL-) and change talk (CT+ and CT- ) into one combined class for commitment 

language (CL) and one combined class for change talk (CT), respectively, and evaluated the accuracy of our 

classifiers in distinguishing the interview fragments labeled with the resulting three broader classes. 

Table 9. Number of samples per aggregated positive and negative sub-classes of CL and CT. 

Class Samples % 

CL 948 31.96 % 

CT 1935 65.24 % 

AMB 83 2.80 % 

Total 2966 100 % 

Distribution of samples across these three classes is shown in Table 9. For this task we used raw data for each 

classifier (no preprocessing). We optimized the number of topics for DL-LDA with respect to the F1 score (Figure 

3) and found out that again the optimal number of topics is 3. Performance of different classifiers on the task of 

differentiating the interview fragments labeled with CL, CT and AMB is summarized in Table 10. In the third set of 

experiments, we aggregated the interview fragments labeled as positive sub-classes of commitment language (CL+) 

and change talk (CT+) into one combined positive class (+) and negative sub-classes of commitment language (CL-) 

and change talk (CT-) into one combined negative class (-) and evaluated the accuracy of our classifiers in 

distinguishing the interview fragments labeled with the resulting sentiment modality-based broader classes. 



  

 

Figure 3. F1 score of DL-LDA by varying the number of topics on the task of classification of aggregated 

positive and negative sub-classes within CL and CT. 

Table 10. Performance of the proposed methods and the baselines on the task of distinguishing aggregated 

positive and negative sub-classes within CL and CT. Best result for each metric is highlighted in boldface. 

Algorithm Recall Precision F1 score 

Naïve Bayes 0.617 0.627 0.611 

LCA 0.674 0.651 0.656 

L-LDA 0.634 0.631 0.587 

DL-LDA 0.673 0.637 0.633 

Distribution of samples across these three classes in shown in Table 11. Similarly to the task of differentiating CT, 

CL and AMB, we tuned DL-LDA with respect to F1 score (Figure 5) and found out that this time the optimal 

number of per-class topics is 5.  

 

Figure 5. F1 score of DL-LDA by varying the number of topics on the task of classification of aggregated 

positive and negative sub-classes across CL and CT. 

Performance of different classifiers on the task of differentiating the utterances labeled with +, - and AMB is 

summarized in Table 12. 

4. Discussion  

Several important observations can be made from Tables 3, 4, 5 and 6. First, stemming and stopwords removal 



  

degrade classification performance of DL-LDA, which performs best without any pre-processing, while Naïve 

Bayes, LCA and L-LDA achieve the best classification performance when stemming is applied. 

Table 11. Number of samples per aggregated positive and negative sub-classes across CL and CT. 

Class # Samples % 

- 351 11.83 % 

+ 2532 85.37 % 

AMB 83 2.80 % 

Total 2966 100 % 

Table 12. Performance of the proposed methods and the baselines on the task of distinguishing aggregated 

positive and negative sub-classes across CL and CT. Best result for each metric is highlighted in boldface. 

Algorithm Recall Precision F1 score 

Naïve Bayes 0.734 0.778 0.753 

LCA 0.818 0.771 0.790 

L-LDA 0.814 0.774 0.781 

DL-LDA 0.838 0.770 0.793 

However, for all 4 classifiers used in this work stopwords removal by itself and in combination with stemming 

decreases the accuracy of classification, which suggests that common stopwords might be important indicators for 

some of the language categories. Second, as follows from Table 7, LCA and DL-LDA outperform both baselines 

(NB and L-LDA) in terms of all three performance measures (Recall, Precision and F1 score). Across all models, 

DL-LDA achieves the best performance in terms of Recall, while LCA achieves the best performance in terms of 

both Precision and F1 score. As follows from Table 8, LCA and DL-LDA also achieve the best per-class 

performance for 4 out of 5 classes. These results lead to two important conclusions. First, explicitly accounting for 

discriminativity of terms (general or class-specific) in an utterance with a latent variable allows to improve 

annotation performance using probabilistic methods. Second, additional division of class-specific multinomials into 

class-specific topics by DL-LDA allows to improve recall, but not precision and F1 score. 

Results of classifying language types without taking into account modality (Table 10) indicate that LCA is 

particularly suited for this task and again support our assumption about the utility of differentiating the terms by 

their discriminativity. LCA and DL-LDA use the strength of statistical associations of terms with the class labels as 

a measure of their discriminativity. Since non-discriminative words are the ones that occur in many fragments 

labeled with different classes, statistical associations of these terms with class labels are relatively weak, which is 

effectively captured by LCA and DL-LDA.  

Table 13. Most characteristic words for each utterance label according to LCA. 

Class Words 

CL- drink sugar gatorade lot hungry splenda beef tired watch tv steroids sleep home 

nervous confused starving appetite asleep craving pop fries computer 

CL+ stop run love tackle vegetables efforts juice swim play walk salad fruit 

CT- got laughs sleep wait answer never tired splenda fault phone joke weird hard don’t 

CT+ time go mom brother want happy clock boy can move library need adopted reduce 

sorry solve overcoming lose 

AMB what taco mmm know say plus snow pain weather 

Results of classifying modality (Table 12) indicate that DL-LDA is the best in detecting the attitude of the speaker. 

This can be explained by the fact that only a portion of vocabularies indicative of specific classes reflect the 

sentiment modality of an utterance, therefore splitting class-specific multinomials into class-specific topics by DL-

LDA allows to isolate the sentiment-specific vocabularies and leverage them during classification. 



  

Examples of the most characteristic terms for each utterance label determined by LCA are provided in Table 13. As 

follows from Table 13, negative commitment language is strongly associated with the words reflecting poor diet 

("sugar", "pop", "fries") and sedentary lifestyle ("watch", "tv", "computer"), while positive commitment language is 

strongly associated with the terms related to exercise ("walk", "play", "run") and healthy food options ("salad", 

"vegetables", "fruit"). The words characteristic of CT- and CT+ generally reflect negative ("don’t", "never", "tired") 

and positive ("can", "need", "lose", "happy") attitudes towards weight loss, respectively. 

5. Conclusion 

In this paper, we proposed Latent Class Allocation, a novel interpretable probabilistic model for supervised text 

classification, and Discriminative Labeled LDA, an extension of Labeled LDA, that differentiates between class-

specific and general terms. Through extensive experimental evaluation, we demonstrated that the proposed models 

have consistently better performance for the task of single class annotation of fragments of Motivational 

Interviewing transcripts than state-of-the-art methods, such as Naïve Bayes and Labeled LDA. 
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