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Abstract—It has long been understood that stratification of
patients into fine-grained cohorts is a foundation of accurate
diagnosis and effective treatment of complex diseases, such
as cancer. Nevertheless, cancer therapies still fail or cause
unnecessary suffering to many patients, which suggests that our
current understanding of cancer sub-types needs to be refined. In
this paper, we propose CLIGEN, a novel computational pipeline
for high-throughput data-driven stratification of patients with
a complex disease into cohorts corresponding to multi-modal
disease sub-types based on clinical and genomic data. We applied
CLIGEN to discover breast cancer sub-types based on the clinical
and genomic data of 503 patients with breast ductal carcinoma in
the Cancer Genome Atlas (TCGA). Quantitative and qualitative
evaluation of the breast cancer sub-types discovered by CLIGEN
indicate that they are biologically meaningful and correlate with
clinical outcomes, such as patient survival time.

Index Terms—disease sub-typing, tensor factorization, somatic
mutations, breast cancer, complex diseases

I. INTRODUCTION

It is now a well-accepted fact that each type of cancer is a
collection of distinct genetic diseases characterized by multiple
dysregulations at different levels of a biological system. Sub-
stantial degree of heterogeneity significantly complicates ac-
curate diagnosis and effective treatment of cancers. Although
it has long been understood that patient stratification into
fine-grained cohorts that correspond to disease sub-types and
identification of clinically actionable markers characteristic
of these cohorts are the central tenets of effective treatment
of complex diseases, such as cancer, many cancer patients
are still misdiagnosed [1] and, as a result, either receive
unnecessary surgery or chemotherapy [2] or do not receive the
needed treatment. Therefore, cancer diagnosis and treatment
can greatly benefit from computational methods for fine-
grained and comprehensive cancer sub-typing.
Remarkable advances in next-generation sequencing coupled
with widespread adoption of electronic health records by
healthcare delivery systems have enabled collection of un-
precedented amounts of clinical and genomic patient data.
However, despite the recent progress in computational methods
to analyze clinical or genomic data in isolation, neither of
these types of data can capture all aspects of pathogenesis
of complex diseases, such as cancer [3]. In particular, past
attempts at cancer patient stratification and treatment selection

based on clinical [4], genomic [5], [6] or transcriptomic [7]–
[9] data alone have yielded only modest success thus far. Since
cancer development and progression are influenced by multiple
factors, including germ-line or somatic tumor genetics, overall
patient health as well as patient demographics [10], it is natural
to assume that cancer sub-types should account for these
modalities of patient data. However, there has been relatively
little research on computational methods for sub-typing of
complex diseases based on clinical and genomic data.
To address this limitation, we propose CLIGEN, a compu-
tational pipeline for fully-unsupervised sub-typing of com-
plex diseases by integrating micro- (genomic) and macro-
level (demographic and clinical) patient data. In the case
of cancer, CLIGEN takes as input both clinical and genomic
data of a given population of cancer patients, which includes
demographic attributes of patients along with somatic mutation
profiles and clinical properties of their tumors, and identi-
fies the patient cohorts within a given population that share
demographic attributes, somatic gene mutations and clinical
properties of tumors. We hypothesize that cancer patient
cohorts discovered by CLIGEN from genomic and clinical
cancer patient data: i) correspond to entirely novel or refined
existing cancer sub-types characterized by both molecular and
clinical markers ii) allow to shed additional light on complex
interactions between clinical outcomes, such as survival time,
and patient demographics, molecular aberrations and clinical
properties of tumors.

II. MATERIALS

The dataset for experiments in this work was constructed
based on the patient data from The Cancer Genome Atlas
- Genomic Data Commons Data Portala (TCGA-GDC) [11].
Specifically, we used somatic mutation (non-silent mutation
from the whole exome sequencing level 3) profiles and clinical
data of patients with breast ductal carcinoma. Out of 825 breast
cancer patients in TCGA, we considered only the patients for
whom both somatic mutation and clinical data were available
(507 patients) and also discarded the patients with fewer
than 10 somatic mutations (4 patients). The resulting dataset
consists of the somatic mutation profiles over 11,996 genes and
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70 values and value ranges of 11 discrete and dichotomized
continuous clinical variables of 503 patients.
Somatic Mutations. The TCGA somatic mutation table ag-
gregates information about mutations in breast cancer patient
tumors and consists of 37 columns and 34032 rows. A row
in this table corresponds to a mutation in the gene designated
in the column “Hugo Symbol” for the tumor sample in the
column “Tumor Sample Barcode”. Additional details regarding
the organization of TCGA data are available in [11]. We
constructed patient mutation profiles as binary vectors with
11,996 dimensions, in which a bit is set, if the patient’s
gene corresponding to that dimension in the vector harbors at
least one non-silent mutation (i.e. missense mutation, nonsense
mutation, non-stop mutation, frameshift mutation, in-frame
insertion or in-frame deletion).
Clinical and Demographic Variables. The 70 values and
value ranges (further referred to as the values of clinical
variables) were obtained from 11 discrete and continuous
clinical and demographic variables in TCGA, which include
the age of cancer diagnosis (dichotomized into 10 value
ranges), gender (2 values), estrogen receptor (ER) status (3
values), progesterone receptor (PR) status (3 values), human
epidermal growth factor receptor 2 (HER2) final status (3
values), American Joint Committee on Cancer (AJCC) breast
cancer stage (9 values), AJCC coded tumor stage (2 values),
AJCC coded lymph node stage (2 values), AJCC coded
metastasis stage (2 values), immunohistochemistry expression
level (dichotomized into 29 value ranges) and PAM50 profile
(5 values). Detailed description of these variables can be found
in [12].

III. METHOD

Figure 1 provides a graphical overview of CLIGENb, the
proposed pipeline for unsupervised sub-typing of complex dis-
eases. CLIGEN consists of three stages: i) data pre-processing
ii) tensor construction and iii) non-negative decomposition of
the constructed tensor to derive multi-modal disease sub-types.
Each of these stages is discussed in detail below.
Data pre-processing. The first stage of CLIGEN illustrated
in Figure 1.a involves pre-processing the input to create a
combined multi-dimensional representation of genomic and
clinical patient data for subsequent analysis. Given the input
mutation table, CLIGEN constructs a binary mutation matrix
M with patients as rows and genes as columns. A value of
the cell Mij of matrix M is set to 1, if the ith patient has
a mutation in the jth gene and to 0, otherwise. Continuous
clinical variables, such as the age of cancer diagnosis, are
discretized into intervals. The values of clinical variables for
all patients are represented as a binary clinical matrix V with
patients as rows and values of clinical variables as columns. A
value of the cell Vik of matrix V is set to 1, if the ith patient
has the kth value of clinical variables.
Tensor construction. Matrices M and V are combined to

create a three-dimensional binary tensor (i.e. multidimensional

bsource code is publicly available at https://github.com/datad/CLIGEN

Fig. 1. Stages of the CLIGEN pipeline: a) data pre-processing and construc-
tion of three-dimensional tensor τ b) deriving multi-modal sub-types via CP
decomposition of tensor τ.

array) τ ∈ RP×G×C , which captures interactions between
somatic mutations and clinical variables. The first mode of
tensor τ corresponds to P patients in the population, while
the other two modes correspond to G distinct genes and C
distinct values of clinical variables (Figure 1.b). A value of
the cell tijk of tensor τ is set to 1, if the ith patient has at
least one mutation in the jth gene and the kth value of clinical
variables and to 0, otherwise.
Tensor decomposition. CLIGEN utilizes Canonical De-
composition (CANDECOMP) and Parallel Factor Analysis
(PARAFAC) or CP tensor factorization [13] to identify disease
sub-types as groups of latent factors in τ. CP decomposition
approximates τ with τ̂, a linear combination of rank-one
tensors. Formally:

τ ≈ τ̂ = Jλ,P,G,CK =
R∑

r=1

λr ·sr =

R∑
r=1

λr ·pr ◦gr ◦cr (1)

where R is the number of rank-one tensors sr that τ is decom-
posed into, λr ∈ R is the weight of the rth rank-one tensor.
Each sr is an outer product (◦) of patient pr ∈ RP , gene
gr ∈ RG and clinical cr ∈ RC latent factors. Patient, gene
and clinical latent factors that correspond to each rank-one
tensor can be thought of as clusters of patients with frequently
co-occurring somatic gene mutations and clinical variables.
Latent factors for all rank-one tensors can be grouped into
the columns of the patient P, gene G and clinical C factor
matrices. CP decomposition of τ is obtained by solving the
following optimization problem:

min
τ̂
‖τ− τ̂‖F (2)



aimed at finding the best approximation of each element tijk
of the original tensor τ from the latent factors corresponding
to rank-one tensors as follows:

tijk ≈
R∑

r=1

λrpirgjrckr (3)

Uniqueness of the optimal solution to the above optimization
problem is an important property of CP decomposition [13].
Molecular and clinical markers of disease sub-types are de-
rived from the gene and clinical latent factors associated with
each rank-one tensor obtained by CP decomposition of τ. Each
element of a gene and clinical latent factor can be interpreted
as a degree of specificity of a particular gene or a clinical
variable to the corresponding disease sub-type. Each element
of a patient latent factor can be interpreted as a membership
proportion of a particular patient in the corresponding disease
sub-type.

IV. RESULTS

We performed both qualitative and quantitative evaluation of
breast cancer sub-types identified by CLIGEN based on the
genomic and clinical data of TCGA breast cancer patients.

A. Quantitative evaluation

Quantitative evaluation was conducted for the task of
cancer patient survival prognosis, which is important
for personalizing cancer treatment [14]. Specifically, we
compared the Cox proportional hazards models that use
the following predictors of patient survival: M1) patient
membership proportions in multi-modal sub-types of breast
cancer discovered by CLIGEN, which correspond to rows
in the patient factor matrix P; M2) patient membership
proportions in molecular phenotypes of breast cancer, which
correspond to rows in the patient factor matrix P obtained
through non-negative factorization of the somatic mutation
matrix as M = PG; M3) patient membership proportions
in clinical phenotypes of breast cancer, which correspond
to rows in the patient factor matrix P obtained through
non-negative factorization of the clinical matrix as V = PC;
M4) random patient membership proportions in a given
number of breast cancer sub-types. In the first experiment,
we compared the accuracy of the Cox models using each of
the above predictors for survival prognosis of breast cancer
patients, while in the second experiment, we compared the
goodness of fit of these models.

1) Accuracy of survival prognosis: In the first experiment, we
compared the area under the ROC curve (AUC) for the models
M1-M4 using randomized 10-fold cross validation. The Cox
models were estimated using the data in the training splits
and evaluated using the data in the testing splits. The plot of
AUC values for models M1-M4 micro-averaged over splits by
varying the number of the most prevalent cancer sub-types we
well as molecular and clinical phenotypes is shown in Figure 2.

Two major conclusions can be drawn from this figure.
First, the Cox regression model that utilizes patient mem-

Fig. 2. AUC of Cox models for breast cancer patient survival time prediction
that utilize patient membership proportions in most prevalent cancer sub-
types discovered by CLIGEN (M1), molecular (M2) and clinical (M3) cancer
phenotypes and random patient membership (M4).
bership proportions in cancer sub-types obtained by CLIGEN
(M1) is consistently more accurate at predicting patient sur-
vival time than the Cox model that uses patient membership
proportions in molecular (M2) and clinical (M3) phenotypes
obtained through NMF, which indicates the importance of
taking into account both clinical and genomic data when deter-
mining cancer sub-types. In particular, the Cox model utilizing
patient membership proportions in multi-modal sub-types as
predictors achieved the highest AUC of 0.5796, when 10
most prevalent sub-types were used, whereas the Cox model
utilizing patient molecular phenotype membership proportions
as predictors achieved the highest AUC of 0.4731, when 9
most prevalent phenotypes were used and the Cox model
utilizing patient clinical phenotype membership proportions as
predictors achieved the highest AUC of 0.5047, when 6 most
prevalent phenotypes were used.
Second, the Cox models utilizing patient membership propor-
tions in the top-k most prevalent sub-types derived by CLIGEN
as well as molecular and clinical phenotypes derived by NMF
are all more accurate at predicting patient survival time than
the baseline Cox model utilizing random patient membership
proportions in the same number of cancer sub-types (AUC =
0.4056).

2) Model goodness-of-fit: In the second experiment, we com-
pared the goodness of fit of the models M1-M4 estimated
on the entire TCGA dataset. The p-values of Log-rank and
Wald tests of these models are summarized in Table I. Both

Model Log-rank test Wald test
M1 8.327e-15s 0.000082
M2 0.315 0.3772
M3 0.0007 0.0124
M4 0.5060 0.5509

TABLE I
P-VALUES OF LOG-RANK AND WALD TESTS OF M1, M2, M3 AND M4

COX PROPORTIONAL HAZARD MODELS.

tests indicate that patient membership proportions in the sub-



types derived by CLIGEN are more statistically significant
predictors of breast cancer patient survival than membership
proportions in breast cancer clinical phenotypes, which in
turn are more statistically significant predictors than random
patient membership proportions and membership proportions
in molecular phenotypes. Kaplan-Meier survival plots for the
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Fig. 3. Kaplan-Meier survival plots for the four most prevalent: a) sub-types
obtained using CLIGEN, b) NMF-based molecular phenotypes, c) NMF-based
clinical phenotypes.

4 most prevalent breast cancer sub-types obtained by CLIGEN
and NMF of mutation and clinical matrices are shown in
Figure 3. As follows from Figure 3, breast cancer patient
cohorts that correspond to the 4 most prevalent sub-types
obtained using CLIGEN are more distinct in terms of survival
dynamics (p = 0.0493) than patient cohorts that correspond
to the 4 most prevalent molecular (p = 0.241) and clinical
(p = 0.2073) phenotypes.

B. Qualitative evaluation

An oncologist performed qualitative evaluation of breast can-
cer sub-types identified by CLIGEN through CP decompo-
sition of the input tensor into 10 rank-one tensors, since this
decomposition results in the most accurate prediction of cancer
survival. An enrichment analysis of the list of genes associated
with each subtype was performed using the Ingenuity Systems
Upstream Analysis tool [15].

Each breast cancer sub-type obtained by CLIGEN was

Fig. 4. Mutual exclusivity across the characteristic genes of the CLIGEN
sub-type with high mutation load.
analyzed and compared with the known breast cancer sub-
types obtained by clustering gene expression data [7]. This
analysis revealed that one of the CLIGEN sub-types corre-
sponds to a small cohort of patients with high mutation load.
A detailed investigation of the molecular markers associated
with this sub-type indicted that these markers correspond to
mutations in the tumor suppressor genes (BRCA1, BRCA2,
TP53, PTEN, RB1) that participate in DNA repair, which
suggests that the high mutation load may be associated with a
mutation in a DNA repair gene pathway(s). As follows from
Figure 4, for each sample, these mutations were mutually
exclusive. Further investigation of these genes can elucidate
the biological process(es) underlying these mutations.
Another CLIGEN sub-type corresponds to a sub-type of the
triple negative breast cancer (TNBC), which is a defined by
the lack of ER, PR and HER2 expression. Further analy-
sis of putative cancer driver genes, potentially activated or
inactivated by the mutations associated with this TNBC-
related CLIGEN sub-type resulted in significant enrichment
of genes with a role in signaling networks that promote the
function of cancer stem-like cells (CSCs), i.e., downstream of
transcription factor TWIST1, and alternative mRNA splicing,
i.e., downstream of serine and arginine-rich splicing factor
SRSF2. CSCs are identified in patient TNBC tumors as a
fraction of self-renewing, tumor-initiating cancer cells that also
give rise to drug resistance and metastatic recurrence [16],
[17]. Alternative mRNA splicing has also been implicated in
maintaining and generating CSCs [18].
The other two CLIGEN sub-types of breast cancer refine
progesterone receptor and estrogen receptor alpha-positive
(ER+) breast cancer, which is responsive to anti-ER therapies,
and the known sub-type of breast cancer, which is driven
by over-expression of the epidermal growth factor receptor
oncogene (HER2) and responsive to HER2-targeted inhibitors.



V. DISCUSSION

Methods for integrative high-throughput analysis of genomic
and clinical data face a common challenge of dealing with
large volumes of data. By utilizing sparse representations
and inexpensive linear algebra operations, tensor factorization
methods effectively address this challenge. Successful appli-
cation of tensor decomposition in different domains led to
further research into efficient optimization methods for tensor
decomposition [19], which makes tensor decomposition the
method of choice for high-throughput cancer sub-typing.
Since tensor factorization methods are parametric, selecting
the optimal number of rank-one tensor components for CP
decomposition (i.e. model order estimation) is an important
practical aspect of CLIGEN. Too few components typically
result in general sub-type definitions, which may combine sev-
eral actual disease sub-types. Too many components typically
result in specific sub-type definitions, which may split the
actual cancer sub-types. It is important to point out that, in
terms of the number of model parameters, CP decomposition,
which assumes that the number of components is the same
per each tensor mode, has an advantage over Tucker tensor
decomposition, which requires specifying the number of com-
ponents per each mode. While it is known that the number
of components that minimizes the reconstruction error of the
original tensor from its components is equal to its rank [13],
finding tensor rank is an NP-complete problem. Even if the
rank of a tensor is known, the number of components that
minimizes the reconstruction error may not result in the best
accuracy for a particular task, such as patient survival time
prognosis. Therefore, the optimal number of components is
typically determined using heuristics, such as cross-validation
[20] (as was done in this work) or hierarchical Bayesian
approach [21], if a suitable prior can be defined.

VI. CONCLUSION

In this paper, we introduced CLIGEN, a novel computational
pipeline for unsupervised sub-typing of complex diseases
based on non-negative decomposition of a binary tensor com-
bining clinical and somatic mutation patient data. Qualitative
and quantitative evaluation of the sub-types discovered by
CLIGEN for breast cancer indicates that representation of
clinical and genomic patient data as a binary tensor and its
subsequent non-negative decomposition is an efficient compu-
tational approach to high-throughput sub-typing of complex
diseases for precision medicine. CLIGEN was not only able
to refine the known breast cancer sub-types, but also elucidate
new characteristics of a complex breast cancer sub-type (triple
negative), which provides an opportunity for further research
to define new cancer sub-types. We also demonstrated that
patient membership proportions in breast cancer sub-types
discovered by CLIGEN are more effective predictors of sur-
vival time than patient membership proportions in data-driven
molecular and clinical phenotypes of breast cancer.
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