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ABSTRACT

Recent advances in deep learning and distributed representations

of images and text have resulted in the emergence of several neu-

ral architectures for cross-modal retrieval tasks, such as searching

collections of images in response to textual queries and assigning

textual descriptions to images. However, the multi-modal retrieval

scenario, when a query can be either a text or an image and the goal

is to retrieve both a textual fragment and an image, which should

be considered as an atomic unit, has been signi�cantly less studied.

In this paper, we propose a gated neural architecture to project im-

age and keyword queries as well as multi-modal retrieval units into

the same low-dimensional embedding space and perform seman-

tic matching in this space. The proposed architecture is trained to

minimize structured hinge loss and can be applied to both cross-

and multi-modal retrieval. Experimental results for six di�erent

cross- and multi-modal retrieval tasks obtained on publicly avail-

able datasets indicate superior retrieval accuracy of the proposed

architecture in comparison to the state-of-art baselines.
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1 INTRODUCTION

Images and text are an integral part of the Web, from photo shar-

ing and social media platforms to on-line encyclopedias. However,

Web search systems still consider images as a separate vertical
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from text and provide only text-to-image (T→I) search function-

ality. Yet, the spectrum of information needs of Web search sys-

tem users goes well beyond text-to-image searches and includes

the search tasks, in which pairs of a textual fragment and an im-

age form atomic retrieval units, such as in image-to-image and text

(I→IT) and text-to-image and text (i.e. T→IT) retrieval scenarios.

Images rarely exist without text and, as illustrated in Figure 1, of-

ten convey complementary information. Therefore, it is natural to

consider both text and image as one retrieval unit.

Airplane Landing at the Los Angles Airport  

LAX Sunset Plane Spotting

Query

Collection Item
Embedding Space

Figure 1: Projection of textual and visual components of

an example query and multi-modal retrieval unit into the

space of concept embeddings. The query term “plane” can

bematched in both textual and visual components of a given

retrieval unit, the query term “LAX” can bematched only in

its textual component, while the term “sunset” can only be

matched in its visual component.

These multi-modal retrieval scenarios are facing the same fun-

damental problem of semanticmatching of queries to retrieval units,

as textual information retrieval (IR). In the case of textual IR, this

problem is typically addressed by projecting sparse bag-of-words

representations of queries and retrieval units (e.g., documents, pas-

sages, sentences) onto dense continuous representations (i.e., em-

bedding vectors), which capture their semantics in a low-dimensional

space, and matching them in this space [7, 50]. Shallow neural ar-

chitectures [37] trained with the goal of making embeddings of

words that frequently appear in the same context to be close to

each other have emerged as a computationally e�cient way of

obtaining word embeddings. At the same time, methods utilizing

word embeddings for document [12] and query [2, 31] expansion

as well as in pseudo-relevance feedback [9, 59] have demonstrated

their e�ectiveness in addressing the problem of vocabulary gap
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in textual IR. Furthermore, several neural architectures based on

Convolutional Neural Network (CNN) [33] and Long-short Term

Memory Network (LSTM) [20], which take word embedding based

representations of queries and documents as input to estimate their

relevance, have been recently proposed for Web search [38], ad-

hoc document retrieval [15], microblog retrieval [41] and question

answering [51].

Deep neural architectures based on CNNs [33] have also been

successfully applied to unsupervised feature extraction and achieved

state-of-the-art performance for many computer vision tasks, such

as image classi�cation [30, 47] and image recognition [18]. Signi�-

cant progress in utilizing neural networks for image classi�cation

and learning of word embeddings led to the emergence of hybrid

neural architectures for cross-modal retrieval tasks, such as gener-

ating image descriptions (i.e., captions) [10, 24–27, 36, 44, 49], some

of which surpassed human performance for this task. A substantial

amount of research also focused on e�cient cross-modal retrieval.

In particular, hashing-based methods [3, 4, 23, 34, 53, 55] apply

hashing to transform di�erent modalities into the same Hamming

space and learn quantizers to convert the isomorphic latent fea-

tures into compact binary codes, which provide a compromise be-

tween e�ciency and accuracy of cross-modal retrieval. However,

the problem of multi-modal retrieval (when retrieval units include

di�erent modalities) has been signi�cantly less studied.

Drawing inspiration from the success of image captioning, we

propose a gated neural architecture called JEMR (Joint-Embedding

forMulti-modalRetrieval) to represent image and keyword queries

as well as multi-modal retrieval units in the space of word embed-

dings and semantically match them in that space, as illustrated in

Figure 1. The proposed architecture consists of the embedding and

relevancematching layers. In the embedding layers, the feature vec-

tor extracted by a deep CNN for a query or a collection item image

is used as the initial hidden state of LSTM to generate the embed-

ding vectors corresponding to image descriptions, which are then

used as input to the relevancematching layers. Both embedding and

relevance matching layers are jointly trained to minimize a struc-

tured hinge loss. The proposed architecture also includes adaptive

gating units that regulate information �ow between the embed-

ding and matching layers.

Retrieval is done based on a nearest neighbor search method

to e�ciently �nd collection items that are the most similar to a

given query, as measured by the output of thematching layers. The

proposed architecture is highly modular and can be easily adapted

to many cross- and multi-modal retrieval scenarios.

The remainder of this paper is organized as follows. In Section 2,

we provide a brief overview of the relevant prior work. The pro-

posed deep neural architecture along with the search method are

discussed in Section 3. Experimental results are presented and an-

alyzed in Section 4. Section 5 concludes the paper.

2 RELATED WORK

Prior to discussing the details of the proposed method, we provide

an overview of the recent research on neural architectures in tex-

tual IR, learning multi-modal representations and cross-modal IR.

Neural architectures in textual IR. Deep learning methods

are rapidly gaining popularity in textual IR and related �elds, such

as question answering. As the �rst step of these methods, docu-

ments and queries are typically transformed into di�erent repre-

sentations, such as letter trigrams [22, 42], word embeddings [37]

or matching histograms [15]. These representations are then used

as input to fully connected feed-forward [15, 22], convolutional [42]

or recurrent [51] neural networks for estimating relevance of doc-

uments to queries. Neural architectures for textual information re-

trieval tasks can also include gating units [15], which allow to di-

rectly incorporate additional relevance signals and heuristics, such

as the importanceweight or inverse document frequency of a query

term.

Learning multi-modal representations. Similar to text re-

trieval, the �rst step of cross-modal retrieval methods typically in-

volves obtaining dense representations for textual and visualmodal-

ities. The state-of-the-art way to obtain embedding of an image is

to use activations in a penultimate layer of deep neural architec-

tures for object recognition [30], which typically consist of several

layers of convolutional �ltering, local contrast normalization and

max-pooling followed by several fully connected layers, after train-

ing those architectures on large image collections, such as Ima-

geNet [40]. A variety of methods can be used to obtain dense repre-

sentations for textual modality. Besides word embedding methods

[37, 39], textual modality in multi-modal retrieval tasks can also be

represented using a letter-trigrammatrix [10]. Alternatively, hand-

crafted textual features, such as bag-of-words counts and LDA top-

ics, can be passed through several fully connected layers to obtain

word embeddings [23].

Linear [57] or non-linear [11, 52] mappings can be learned to

convert independently obtained embeddings of images and words

into multi-modal embeddings in the same semantic space for a par-

ticular cross-model task, such as image captioning or retrieval. Al-

ternatively, zero-shot learning methods train direct mappings of

image embeddings into the space of word embeddings [43] and

vice versa [6]. Image representations have also been incorporated

into the skip-gram model [37] for learning word embeddings en-

riched with perceptual information [19, 32].

Cross-modal IR. Cross-modal (image-to-text and text-to-image)

retrieval methods can be categorized into correlation-, semantic-,

and hashing-based ones. Correlation-basedmethods utilize Canon-

ical Correlation Analysis (CCA) [17] and its variants, such as ker-

nel CCA [21] and normalized CCA [14], to capture linear and/or

non-linear correlations between textual and visual modalities for

bi-directional ranking of images and captions. Semantic methods

leverage dense multi-modal representations and deep neural ar-

chitectures. For example, a neural architecture for cross-modal re-

trieval, which combines one CNN for image representation and

one CNN for calculating word-level, phrase-level and sentence-

level matching scores between an image and a sentence, was pro-

posed in [35].

A similar task to cross-modal retrieval is image captioning or

associating textual descriptions (e.g. sentences [24, 44] or sentence

fragments [25]) eitherwith entire images [49] or their fragments [24,

25]. An image captioning method proposed in [10] ranks textual

fragments for a given image and vice versa based on the cosine

similarity between their embeddings. Captions can also be gener-

ated by sampling from a log-bilinear language model conditioned



on the embeddings of already generated caption words and the im-

age feature vector [26].

Neural network architectures proposed for image captioning

are typically based on the encoder-decoder framework. For exam-

ple, a deep CNN can be used as an encoder and LSTM as a decoder

[49]. A combination of CNN and LSTM was used as an encoder

and multiplicative neural language model incorporating linguistic

structure was used as a decoder in [27]. Image feature vector ob-

tained by a deep CNN can also be directly incorporated into an

RNN [36] for caption generation.

Finally, hashing-based cross-modal retrieval methods [3, 4, 23,

34, 53, 55] learn hash functions that map images and text in the

original space into a Hamming space of binary codes, such that the

similarity between the objects in the original space is preserved in

the Hamming space. Some hashing-based methods [3, 4, 23] also

leverage deep CNNs for creating dense representations of images.

Approximate Nearest Neighbor (ANN) [1] search algorithm ac-

companied by a proper technique to index collection items enables

fast and accurate retrieval in a Hamming space. For this reason,

ANN is frequently used in cross-modal hashing methods to rank

collection items in the order of their similarity to a query. For ex-

ample, [23] used ANN to accelerate retrieval of binary hashes ob-

tained using CNN, while [58] used ANN coupled with a sensitive

Jaccard similarity metric to e�ciently search in sparse and high-

dimensional space of cross-modal codes.

3 METHOD

3.1 Proposed Neural Architecture

Without loss of generality, the proposed neural architecture is dis-

cussed for the case of text-to-image and text (T→IT) retrieval task

(i.e., retrieving a multi-modal collection item with a textual modal-

ity dt and a visual modality dv given a textual keyword query q).

However, we would like to emphasize that the proposed architec-

ture is general and can be easily adapted to other cross- and multi-

modal retrieval tasks (e.g. when collection items have only textual

or visual modality).

The proposed neural architecture consists of two types of layers.

The embedding layers (illustrated in Figure 2 for images) extract

concept and topic embeddings from textual and visual modalities

of queries and collection items, while the relevance matching lay-

ers (illustrated in Figure 3) calculate the relevance score of a query

to a collection item.

3.1.1 Embedding layers. The goal of these layers is to create

dense low-dimensional representations of a query (q) and di�er-

ent modalities of a collection item (dt and dv). The output of these

layers consists of the two sets of matrices of low-dimensional rep-

resentations S′ and S′′ that are used later in estimating the rele-

vance of a collection item to a query. Both of these matrices con-

tain embeddings of concepts from a controlled vocabulary. In our

experiments, this controlled vocabulary consists of the words in

the titles of all English Wikipedia articles. Each embedding vector

in these matrices is a representation of a concept, which can be a

word in a query or collection item’s text (textual concept) or an

object in a collection item’s image (visual concept).

Table 1: Summary of notation

Var. Description

q query

d multi-modal collection item

dt textual modality of d

dv visual modality of d

qi ith concept embedding vector of q

dt,i ith concept embedding vector of dt
dv,i ith concept embedding vector of dv

Q′ concept embedding matrix for q

D′
t concept embedding matrix for dt

D′
v concept embedding matrix for dv

Q′′
i ith topic embedding matrix for q

D′′
t,i ith topic embedding matrix for dt

D′′
v,i ith topic embedding matrix for dv

p(d |q) probability of d being relevant to q

The �rst set, S′
= {Q′

,D′
t,D

′
v}, consists of concept embedding

matrices that are used for computing the matching scores at the

concept level. The matrices in this set contain embeddings of con-

cepts in a query, collection item’s text or collection item’s image,

respectively. The second set, S′′
= {Q′′

1 ,Q
′′
2 , . . ., D

′′
t,1,D

′′
t,2, . . .,

D′′
v,1,D

′′
v,2, . . .}, consists of topic embedding matrices that are used

for computing the matching scores at the topic level. We obtain

each of the matrices in this set by clustering the embedding vec-

tors of all concepts in a givenmodality of a query or collection item

(e.g. clustering embeddings of words in a keyword query). We use

cosine similarity as a measure of semantic similarity of concept

vectors. For the sake of notational simplicity, in Figure 3, we de-

note the matrices Q′, D′
t and D

′
v in the set S′ as QTC (Query Text

Concepts), CTC (Collection Text Concepts) and CIC (Collection Im-

age Concepts), respectively, and the matrices Q′′
i , D

′′
t,i and D′′

v,i in

the set S′′ as QTTi (Query Text Topic i), CTTi (Collection Text

Topic i) and CITi (Collection Image Topic i).

If the number of concepts in q, dt and dv is |Q′ |, |D′
t | and |D′

v |,

and k is the size of the embedding vector representing each con-

cept, then the dimensions of Q′, D′
t and D′

v are k × |Q′ |, k × |D′
t |

and k × |D′
v |, respectively. In our experiments, we set k to 300. On

the other hand, if Q′, D′
t and D

′
v have |Q

′′ |, |D′′
t | and |D′′

v | clusters

(topics), then Q′′, D′′
t and D′′

v contain embedding vectors of size k

that correspond to each of the topics in q, dt and dv.

word2vec [37] embeddings were used to represent the concepts

in textual modality of queries that exist in the adopted controlled

vocabulary. Embeddings of concepts in the visual modality were

obtained by adopting the neural architecture for image captioning

proposed in [49] (illustrated in Figure 2), which combines a deep

CNN [30] for image feature extraction and LSTM [20] for caption

generation. Considering all the words in the adopted controlled

vocabulary as candidate visual concepts, we use LSTM to model

p(dv,i+1 |dv,1, . . . , dv,i ), which is the probability of the (i + 1)
thword

embedding vector dv,i+1 to be used for representing a visual con-

cept in an image of the collection item, given the word embedding



Figure 2: Image captioning layers in the proposed deep neu-

ral architecture for T → T I task. A combination of convo-

lutional layers conv1-conv5 and fully connected layers fc1-

fc3 is used for image feature extraction. LSTM is used for

caption generation.

vectors dv,1, . . . , dv,i that have already been generated as visual

concepts for the image, and select the word embedding dv,i+1 that

maximizes the probability p(dv,i+1 |dv,1, . . . , dv,i ). This criterion

ensures that the selected visual concept best describes a given im-

age in conjunction with previously selected i concepts. As can be

seen from Figure 2, in this iterative approach, the �rst concept vec-

tor (dv,1) is generated by maximizing the probability computed di-

rectly from the feature vector obtained from the CNN layers (dv,0).

We repeat this process until LSTM generates a pre-de�ned number

of visual concept embedding vectors for a given collection item im-

age.

Although hybrid neural architectures have been studied for im-

age captioning [49], the objectives of these architectures are di�er-

ent from this component of our proposed architecture for multi-

modal retrieval task. For the image captioning task, LSTM and

CNN layers are trained with the goal of generating image descrip-

tions that are the most understandable by humans, while for the

multi-modal retrieval task, these layers are trained with the goal

of producing the image descriptions that maximize retrieval accu-

racy.

3.1.2 Relevance matching layers. The goal of these layers is to

calculatep(d |q), the probability of a collection itemd to be relevant

to query q. We further decompose p(d |q) into topic and concept

relevance matching scores as:

p(d |q) ≈ρ(Q′
,D′

t)p(D
′
t |Q

′) + ρ(Q′
,D′

v)p(D
′
v |Q

′)+
∑

j,k

ρ(Q′′
k
,D′′

t, j )p(D
′′
t, j |Q

′′
k
) + ρ(Q′′

k
,D′′

v, j )p(D
′′
v, j |Q

′′
k
) (1)

where ρ(·, ·) computes the prior probabilities for the concept and

topical relevance, which are obtained by the gating network de-

scribed in Section 3.1.3. A similar idea of lexical and semanticmatch-

ing has been shown to be e�ective in textual IR [28, 29, 54].

The probabilitiesp(D′
t |Q

′),p(D′
v |Q

′),p(D′′
t, j |Q

′′
k
) andp(D′′

v, j |Q
′′
k
)

are computed as a combination of Bidirectional Long Short-Term

Memory (BiLSTM) [48] units, max-pooling and cosine similarities,

as shown in Figure 3.

3.1.3 Gating Network. To account for the semantic similarity

of individual concept vectors, we use multiple gates to regulate

the concept and topic relevance probabilities. In other words, sim-

ilar to LSTM [20], Highway or Residual Networks [18, 45], we pro-

vide connections from the input layer of the relevance matching

Figure 3: Projection layers in the proposed neural network

architecture for T → T I task. QTTi , CTTi and CITi are low-

dimensional representations of the i-th topic in the query’s

text, collection item’s text and collection item’s image, re-

spectively. QTC, CTC and CIC are low-dimensional repre-

sentations of concepts in query’s text, collection item’s text

and collection item’s image.

component to its last layer through the gating units that regulate

the information �ow from these layers. The gate function ρ(Φ,Ψ)

depends on the sum of L2-norms of the distances between the ele-

ments of Φ = [ϕ1,ϕ2, . . .] and Ψ = [ψ1,ψ2, . . .] as:

ρ(Φ,Ψ) ≈ 1 −

(

∑

l mini ‖ϕi −ψl ‖
2
2

2|Ψ|
+

∑

i minl ‖ϕi −ψl ‖
2
2

2|Φ|

)

,

Φ,Ψ ∈ {Q′
,D′

t ,D
′
v,Q

′′
k
,D′′

t, j ,D
′′
v, j } (2)

where |Φ| and |Ψ| are the number of embedding vectors in Φ and

Ψ. Since ϕi andψl are normalized vectors, �nding mini ‖ψi −ϕl ‖
2
2

is equivalent to �nding a concept vector in Φ that has the highest

cosine similarity withψj . The score
∑

l mini ‖ϕi −ψl ‖
2
2 is the sum

of distances between all embedding vectors in Ψ and their most

similar embeddings in Φ. The second term in (2) accounts for the

cases when |Ψ| , |Φ|. It can be easily shown that this gate function

always has values between zero and one, and it computes similarity

between the most similar pairs in two sets of embedding vectors

Φ and Ψ. Considering these gating units, the estimated relevance

probability of two matrices of embeddings Φ and Ψ is obtained as

the product of p(Ψ|Φ) calculated by the relevance matching layers

and ρ(Φ,Ψ) calculated by the gating units.



3.1.4 Extensions to other Cross- andMulti-modal Retrieval Tasks.

Besides T→IT (shown in Figure 3), the proposed method is eval-

uated in Section 4 for �ve other cross- and multi-modal retrieval

tasks (T→I, I→T, I→I, T→T and I→TI). The architectures for these

tasks can be straightforwardly obtained from the one for the T→IT

task. For example, the neural architecture for the I→T task has

CNN and LSTM layers associated with the query and an embed-

ding layer associated with the collection item. Parallel projection

and matching layers that share the same set of weights can be

added to the proposed architecture to extend this architecture to

the cases when more than one textual or visual modality is associ-

ated with a query or a collection item.

3.2 Training

The training data for the proposed architecture consists of triplets

of related and unrelated collection items to a given query. If we

designate one of these triplets as (q,d+i ,d
−
i ) and a vector of param-

eters as θ , then �nding θ involves minimizing the following hinge

loss:

min
θ

(

λo

2
| |θ | |22 +

∑

(q,d+,d−)∈T

max(0,p(d+ |q) − p(d− |q) + β)

)

(3)

where T is the set of triplets in the training data, λ0 is a con-
stant, and β is a desired margin between the relevance probabil-
ities of relevant and non-relevant collection items with respect to
a query. The second term in the objective function of the above
optimization problem is our training loss (L(θ )) which enforces
p(d+i |q) > p(d

−
i |q). The loss function can also be written in terms

of the concept and topic relevance probabilities as:

L(θ ) =
∑

(q,d+,d−)∈T

(

ρ(Q ′
, D′

t)max(0, p(D′+
t |Q ′) − p(D′−

t |Q ′) + β ′t )

+ ρ(Q ′
, D′

v)max(0, p(D′+
v |Q ′) − p(D′−

v |Q ′) + β ′v)

+

∑

j,k

ρ(Q ′′
k , D

′′
t, j )max(0, p(D′′+

t, j |Q
′′
k ) − p(D′′−

t, j |Q
′′
k ) + β

′′
t )

+

∑

j,k

ρ(Q ′′
k , D

′′
v, j )max(0, p(D′′+

v, j |Q
′′
k ) − p(D′′−

v, j |Q
′′
k ) + β

′′
v )

)

where the prior probabilities and the margin parameters β ′t , β
′
v,

β ′′t and β ′′v are independent of the neural network.

The structured loss function in the above equation can be viewed

as a sumof four di�erent loss functions. The �rst two loss functions

depend on the probability of relevance of di�erent modalities of a

collection item and a query. The last two loss functions depend on

the probability of topical relevance of a collection item and a query.

The proposed architecture is trained in several stages. In the

�rst training stage, a shallow neural network is trained by using

the skip-gram model [37] over the chosen controlled concept vo-

cabulary. In the second training stage, the image feature extraction

network is trained. In the third stage, the parameters of the LSTM

layers that generate visual concept vectors are trained. Next, the

parameters of the BiLSTM layers are trained, and �nally, in the last

training stage, the parameters of the relevance matching layers are

trained.

In the �rst training stage, we utilizeword2vec vectors pre-trained

for 3 million words and phrases on a Google News corpus1 and

1https://drive.google.com/�le/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/

prune the table of word embeddings to keep the ones with a word

or a phrase that exists in our controlled vocabulary. We use the

pruned table as the table of concept vectors. In Stage 2, we train

weights for conv1–5 and fc1–3 layers on ILSVRC-2012 dataset2. In

Stage 3, we use the training data from 2015 MS COCO Image Cap-

tioning Challenge [49] to train LSTM layers. In Stage 4, to train

the BiLSTM layers, we use the training data from Yahoo Ques-

tion answering dataset, which is described in Section 4. Finally, as

shown in Figure 4, in the last stage, we use the training data from

multi-modal retrieval datasets, which are described in Section 4.

The parameters of the fc2-fc3 and LSTM and BiLSTM layers are

�ne-tuned in the last training stage.

Shared
Weights

Retrieval Network

Retrieval Network

Figure 4: Procedure to train the parameters of the neural

network in the last training stage. The upper and lower net-

works are the same as the network shown in Figure 3.

3.3 Search

Weconsidered the inverse of the relevancematching score between

a collection item and a query computed by the proposed architec-

ture as a distance and adopted two distance-based search methods,

a brute-force k-nearest neighbor search (k-NN) and approximate

k-nearest neighbor (ANN) [16] to �nd collection items that have

the maximum relevance matching scores (or minimum distance)

with respect to a given query.

4 EXPERIMENTS

We evaluate our proposed architecture using two datasets, which

were chosen with the goals of (1) investigating whether JEMR over-

�ts the training data, (2) evaluating JEMR on a dataset without ex-

plicit bridge information between textual and visual modalities of

collection items, and (3) evaluating JEMR on a dataset with out-of-

sample images and texts. We compare the performance of our pro-

posedmethodwith two state-of-the-art unsupervised and three su-

pervised baselines that leverage deep neural networks. We also in-

vestigate the e�ect of image feature extractors on the performance

of our proposed architecture by examining the cases of using im-

age feature extractors other than AlexNet. Finally, we examine the

e�ect of a number of acceleration methods on the speed of the pro-

posed method. The proposed method is compared with the base-

lines based onMeanAverage Precision (MAP) and Precision-Recall

curves.

4.1 Datasets

For all experiments in this paper, we use the two datasets based

on the ones in [4] and [55]. NUS-WIDE[5], the �rst dataset, is a

2https://github.com/BVLC/ca�e/tree/master/models/bvlc_alexnet

https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/
https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet


multi-modal dataset with 269,648 image-tags pairs, 5,018 tags and

a ground truth for 81 concept categories. Each image in the NUS-

WIDE or ImageNet dataset [8] belongs to a category. NUS-WIDE

and ImageNet datasets have 16 of these categories in common. We

prune images from NUS-WIDE that do not belong to any of these

common categories. NUS-WIDE contains one textual document

for each image, which is obtained by aggregating all its correspond-

ing tags. We obtain the query set for NUS-WIDE by randomly se-

lecting 2000 textual documents and 2000 visual documents from

NUS-WIDE.

The other dataset is ImageNet-YahooQA [4], which consists of

10 million images from ImageNet [8] and 300, 000 texts obtained

by using Yahoo Query Language API3. This dataset is generated

by using the tags from the NUS-WIDE dataset, i.e., 5,018 tags in

NUS-WIDE are used as keyword queries to obtain the set of Ya-

hoo QAs. The relevant answers to questions in Yahoo QAs dataset

are considered as the textual documents in ImageNet-YahooQA.

The goal of multi-modal retrieval using this dataset is to �nd an-

swers from Yahoo QAs dataset that are semantically related to an

image query randomly chosen from the ImageNet dataset and vice

versa. In other words, only T→I and I→T retrieval tasks can be ex-

amined on this dataset. Multi-modal dataset similar to ImageNet-

YahooQA is MIRFLICKR-YahooAnswer dataset introduced in [55].

Similar to the NUS-WIDE, we prune ImageNet-YahooQA by re-

moving the images in ImageNet that do not have any of 5,018 tags

in NUS-WIDE. Similar to NUS-WIDE, we obtain a query set by

randomly selecting 2000 texts and 2000 images from ImageNet-

YahooQA.

In the last training stage described in Section 3.2, we use the

training data fromNUS-WIDE for experiments on both ImageNet-

YahooQA and NUS-WIDE datasets. To obtain the ground truth

for evaluation, we assumed that any pair of query and collection

items (either containing image, text or both) are relevant, if both

of them belong to at least one of the 16 categories that NUS-WIDE

shares with ImageNet.

4.2 Experimental Setup

We used TensorFlow version 1.0.14 to implement and train our

deep neural architecture on a Linux server with a NVIDIA Tesla

K10GPUwith batch size 32 for 100 epochs.We use back-propagation

with stochastic gradient descent to train the parameters of our pro-

posed deep neural network. To speed up mini-batch learning, RM-

SProp was used with a decay of 0.9, and ϵ = 1.0. Hyper-parameters

(e.g. ρ, β) were optimized using coordinate ascent based on three-

fold cross-validation.

As mentioned earlier, besides using AlexNet as the image fea-

ture extractor, we also experimented with ResNet 152 [18], Incep-

tion V3 [47] and Inception-ResNet-v2 [46]. We use the pre-trained

weights of these CNNs, which are publicly available for Tensor-

�ow5 and adapt the weights of AlexNet that are publicly available

in Ca�e6 to Tensor�ow.

3https://developer.yahoo.com/yql/
4https://github.com/tensor�ow/tensor�ow/releases/tag/v1.0.1
5https://github.com/tensor�ow/models/tree/master/slim
6https://github.com/BVLC/ca�e/tree/master/models/bvlc_alexnet

4.3 Baselines

In the experiments, we consider the following two unsupervised

and three supervised baselines:

CCA-MV [13]: extends canonical correlation analysis (CCA) to the

case of having multiple views of visual, textual and semantic fea-

tures obtained by clusteringwords.We use a three-viewCCA (“CCA

(V+T+C)” in [13]). We use the same list of features adopted in [13]

to implement this method.

CCQ [34]: is an unsupervised cross-modal hashing based retrieval

method that adopts a uni�ed optimization framework to jointly

learn the latent space and similarity preserving composite quanti-

zation that maximize correlation. Unlike JEMR, CCQ does not rely

on neural networks.

DSM [56]: similar to JEMR provides real-valued representations for

visual and textual modalities. However, DSM also uses CNN and

hand-crafted features to obtain representations of visual and tex-

tual modalities. The hand-crafted features are extracted using topic

models and bag-of-words.

DVSH [3]: adopts a two-sided deep CNN-LSTM network for joint

representation learning and hash coding. One side applies CNN

to project images and LSTM to project text into a common sub-

space and another LSTM network computes the matching score of

these projected modalities. The other side, utilizes CNN and LSTM

networks to encode the textual and visual modalities of collection

items and then it computes the similarity between the generated

isomorphic hash codes. The network is trained according to the

computed matching score and the similarity of the generated hash

codes.

THN [4]: adopts CNN and multilayer perceptrons and has a similar

training process to JEMR, as both architectures utilize the training

data from di�erent datasets to train di�erent components of the

network. The main goal of using diverse training data is to enable

the retrieval system to process queries in a collection that has a

di�erent distribution. For example, given a query selected from Ya-

hoo QAs dataset, it allows the retrieval system to obtain relevant

images in ImageNet dataset.

MCNN [35]: adopts one CNN to learn image representations and

Skip-gram method to learn text representations, and another CNN

to compute the multi-modal matching scores between a query and

collection items. This method performs word-level, phrase-level

and sentence-level matching using a matching CNN.

Similar to JEMR, DSM, DVSH, THN, and MCNN adopt deep neural net-

works to extract features from query and collection items. Specif-

ically, DVSH is similar to JEMR in that it uses a hybrid CNN-LSTM

network. However, unlike JEMR, DVSH and THN both employ hash-

ing methods in approximating nearest neighbor search. We used

16 bits for hashes created by both DVSH and THN.

4.4 Results and Discussion

Table 2 summarizes the performance of the proposed architecture

(JEMR) and six state-of-the-art baselines in terms of MAP for six

multi-modal retrieval scenarios (I→T, T→I, I→IT, T→IT, I→I, and

T→T) on two datasets (NUS-WIDE and ImageNet-YahooQA). In

ImageNet-YahooQA dataset, for the tasks T→T and T→IT, we

obtain the textual query from a set of related answers in YahooQAs

dataset and the multi-modal collection items from the ImageNet

https://developer.yahoo.com/yql/
https://github.com/tensorflow/tensorflow/releases/tag/v1.0.1
https://github.com/tensorflow/models/tree/master/slim
https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet


dataset. However, since Yahoo QAs dataset does not contain any

images, we do not evaluate themethods for I→I and I→IT retrieval

tasks on the ImageNet-YahooQA dataset.

As follows from Table 2, JEMR outperforms all baselines in all of

the six retrieval tasks with statistically signi�cant di�erence. This

table also indicates that, on average, the performance improvement

of JEMR relative to DSM, DVSH, THN, and MCNN is higher for the I→IT,

T→IT, I→I, and T→T, than for I→T and T→I retrieval tasks. This

can be explain by the fact that DSM, DVSH, THN, and MCNN do not pro-

vide anymechanisms to create embeddings or encodings shared by

both modalities for I→IT and T→IT retrieval tasks.

By experimentingwith the two datasets (NUS-WIDE and Image-

Net-YahooQA), we can evaluate the e�ect of existence of explicit

relationships between query and collection items in training of the

proposed network. Table 2 reveals that the methods leveraging

deep neural networks, i.e., DSM, DVSH, THN, MCNN, and JEMR have

higher MAP values than the unsupervised baselines, i.e., CCA-MV

and CCQ. It can be also concluded that, on average, these improve-

ments are higher on ImageNet-YahooQA than on NUS-WIDE.

This is because deep neural networks can better learn from diverse

training data than the shallow baselines. In particular, we can also

observe that the percentage of improvement of JEMR over its best

performing baselines is greater on ImageNet-YahooQA than on

NUS-WIDE, which can be an indication of superior ability of JEMR

to generalize to the collection items that do not exist in the multi-

modal retrieval training data. Although DVSH and JEMR both use

hybrid deep CNN-LSTM Networks, JEMR has a higher MAP value

than DVSH [3]. This can be attributed to the gated structure of JEMR,

which enables computing the matching functions via considering

local similarity of word embedding vectors as well as global simi-

larity of a collection item to a query.

The results for I→I and T→T tasks were included in Table 2

in order to analyze the in�uence of an additional textual or vi-

sual modality (i.e., I→I, and T→T tasks) on the performance of

JEMR and its baselines. Based on this table, we can conclude that

the proposed architecture and baseline methods have on average

2.8% higher MAP values for the T→IT task than for T→T task

on NUS-WIDE and ImageNet-YahooQA datasets. This improve-

ment is statistically signi�cant for all methods and we can deduce

that considering additional visual modality can improve the qual-

ity of the T→T retrieval task. Following the same reasoning, we

can conclude that with on average 4.2% higher MAP values on

NUS-WIDE dataset, considering additional textual modality for

the I→I task also provides statistically signi�cant improvement for

all methods.

Similar to the observations made from Table 2, the precision-

recall curves in Figures 5 and 6 indicate superior performance of

JEMR over its best-performing baselines for I→T, T→I, T→T, and

T→IT tasks on NUS-WIDE and ImageNet-YahooQA datasets.

These �gures indicate that JEMR and THN have greater performance

improvement in comparison to the other baselines on the ImageNet-

YahooQA dataset than on NUS-WIDE, which is an indication of

better generalization of these two methods to the unseen data. Fig-

ure 6 is provided to compare precision-recall curves when the re-

trieval method can get access to an additional visual component

of the collection items, in addition to their textual components (by

comparing T→T and T→IT tasks). Figure 6 indicates that JEMR

demonstrates greater improvement over the baselines for T→IT

than for T→T task, which is because JEMR takes into account local

information between modalities of collection items.
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Figure 5: Precision-recall curves for the proposed method

and the baselines for the NUS-WIDE and ImageNet-

YahooQA datasets for I→T and T→I tasks.
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Figure 6: Precision-recall curves for the proposed method

and the baselines for the NUS-WIDE and ImageNet-

YahooQA datasets for T→T and T→IT tasks.

To investigate the e�ectiveness of applying accelerated search

on performance of the proposed method, we combined JEMR with

k-NN and approximate nearest neighbors (ANN) searchmethods [16]

and report the results in Table 3. JEMR+KNN uses a brute-force search



Table 2: Performance of the proposed architecture (JEMR) and the baselines, as measured by MAP.⋆ and † indicate statistically

signi�cant improvements according to Fisher’s randomization test with p < 0.05 over the best performing baselines THN [4]

and MCNN [35], respectively. The percentage improvement of JEMR over THN [4] and MCNN [35] are shown in parenthesis.

Dataset Task CCA-MV [13] CCQ [34] DSM [56] DVSH [3] THN [4] MCNN [35] JEMR

NUS-WIDE I→T 0.4261 0.4877 0.6415 0.7236 0.7268 0.7381 0.7538⋆(3.71% / 2.13%)

T→T 0.5381 0.6261 0.6801 0.7109 0.7321 0.7402 0.7833⋆†(6.99% / 5.82%)

I→IT 0.4563 0.5115 0.6759 0.6983 0.7494 0.7528 0.7984⋆†(6.54% / 6.06%)

T→IT 0.5449 0.6317 0.6949 0.7532 0.7649 0.7693 0.8092⋆†(5.79% / 5.19%)

I→I 0.4258 0.4652 0.6568 0.6745 0.7093 0.7113 0.7563⋆†(6.63% / 6.33%)

T→I 0.4481 0.5165 0.6782 0.7468 0.7572 0.7795 0.7825⋆(3.34% / 0.38%)

ImageNet-YahooQA I→T 0.1145 0.2152 0.4142 0.5631 0.6132 0.6092 0.6557⋆†(6.93% / 7.63%)

T→I 0.1361 0.2389 0.4209 0.5938 0.6341 0.6278 0.6804⋆†(7.30% / 8.38%)

T→IT 0.2595 0.3725 0.5665 0.6102 0.6383 0.6303 0.6929⋆†(8.55% / 9.93%)

T→T 0.2437 0.3571 0.4869 0.6029 0.6314 0.6282 0.6872⋆†(8.84% / 9.39%)

method to �nd all nearest neighbors, while JEMR+ANN applies ap-

proximations, which result in a smaller number of collection items

than k-NN that have to be scored with the relevance matching lay-

ers of the proposed architecture. In JEMR+ANN and JEMR+KNN, the

collection items are represented by a single concept vector that is

an average of all of its concept vectors. In this experiment, we set

the size of the neighborhood and the maximum number of itera-

tions to be 1000 for both JEMR+ANN and JEMR+KNN.

Table 3 indicates that, although JEMR uses a brute-force search

method and examines all collection items, its MAP is, on aver-

age, around 5% higher than MAP of JEMR+ANN. On the other hand,

JEMR+KNN has, on average, around 5% higher MAP than JEMR+ANN.

Without considering the time to locate objects of collection items

in the embedding space, we observed that, on average, JEMR is

around 1200 times and JEMR+KNN is around 150 times slower than

JEMR+ANN. Therefore, we can conclude that using an approximate

search method can substantially decrease the search time with a

negligible degradation in accuracy.

Table 3: MAP of JEMR on NUS-WIDE dataset when di�erent

search methods are used.

Task I→T T→I I→IT T→IT

JEMR+ANN 0.7381 0.7303 0.7723 0.7926

JEMR+KNN 0.7477 0.7791 0.7921 0.8035

JEMR 0.7538 0.7825 0.7984 0.8092

Table 4 re�ects the impact of state-of-the-art deep CNN archi-

tectures, such as ResNet 152[18], Inception V3[47] and Inception-

ResNet-v2[46] on performance of JEMR, if they are utilized for im-

age feature extraction instead of AlexNet. Similar to the training

of AlexNet, the parameters of these three networks are pre-trained

using the training data from ImageNet dataset with the parameters

of their last two layers �ne-tuned based on the training data, once

usingMS-COCO and once usingNUS-WIDE datasets. Table 4 indi-

cates that utilizing Inception-ResNet-v2, ResNet 152 and Inception

V3 results in higher MAP than AlexNet, with Inception-ResNet-v2

producing a statistically signi�cant improvement in MAP over the

other networks, according to the Fisher’s randomization test with

p < 0.05.

Table 4: MAP of JEMR on NUS-WIDE dataset when di�erent

CNN networks are used in the proposed architecture.

CNN I→T T→I I→IT T→IT

AlexNet 0.7538 0.7825 0.7984 0.8092

ResNet 152 0.7932 0.8053 0.8178 0.8223

Inception V3 0.7986 0.8114 0.8250 0.8377

Inception-ResNet-v2 0.8049 0.8230 0.8287 0.8424

5 CONCLUSIONS

This paper presents a novel neural architecture for multi-modal re-

trieval when the query has a single modality and collection items

can have multiple modalities. The proposed architecture utilizes a

hybrid LSTM-CNN network to project the visual modalities and

the skip-gram model to project the textual modalities into a com-

mon subspace, which contains embeddings of words in the tex-

tual modalities and embeddings of words that describe the visual

modalities. The proposed architecture also includes a gating net-

work to regulate the information �ow by accounting for concept

level and topic level matching scores. The experiments on hetero-

geneous datasets indicate that the proposed method outperforms

state-of-the-art baselines. We hypothesize that the proposed archi-

tecture can also be successfully applied tomulti-modal e-commerce

search and leave validation of this hypothesis to future work.
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