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ABSTRACT

Accurately answering verbose queries that describe a clini-
cal case and aim at finding articles in a collection of medical
literature requires capturing many explicit and latent as-
pects of complex information needs underlying such queries.
Proper representation of these aspects often requires query
analysis to identify the most important query concepts as
well as query transformation by adding new concepts to a
query, which can be extracted from the top retrieved doc-
uments or medical knowledge bases. Traditionally, query
analysis and expansion have been done separately. In this
paper, we propose a method for representing verbose domain-
specific queries based on weighted unigram, bigram, and
multi-term concepts in the query itself, as well as extracted
from the top retrieved documents and external knowledge
bases. We also propose a graduated non-convexity optimiza-
tion framework, which allows to unify query analysis and
expansion by jointly determining the importance weights
for the query and expansion concepts depending on their
type and source. Experiments using a collection of PubMed
articles and TREC Clinical Decision Support (CDS) track
queries indicate that applying our proposed method results
in significant improvement of retrieval accuracy over state-
of-the-art methods for ad hoc and medical IR.
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•Information systems → Query reformulation;
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1. INTRODUCTION
Given descriptive summary of a medical case as a query,

the goal of information retrieval systems for clinical deci-
sion support (CDS) is to return articles from a collection of
medical literature that are relevant to the query and can
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assist a clinician in making decisions regarding the case,
such as prescribing a medication, procedure or treatment.
A fundamental challenge faced by those systems is that al-
though CDS queries are typically verbose and may consist
of several sentences (e.g. “33-year-old male presents with

severe abdominal pain one week after a bike accident, in

which he sustained abdominal trauma. He is hypotensive

and tachycardic, and imaging reveals a ruptured spleen and

intraperitoneal hemorrhage”), only a small subset of query
terms (henceforth referred to as explicit concepts) corre-
spond to the key query concepts, such as “bike accident”,
“abdominal trauma”, “tachycardia”, “splenic rupture”, “in-
traperitoneal hemorrhage”, which represent the information
need behind this query, while many other important con-
cepts that are relevant to this information need (e.g. “spon-
taneous spleen rupture”, “splenic trauma”, etc.) are not di-
rectly mentioned in the query (henceforth referred to as la-
tent concepts). Providing complete and accurate retrieval
results for CDS queries requires both correct identification
of the key explicit concepts and addition of important latent
concepts to the query, as well as precise weighting of explicit
and latent concepts in the modified query.

While previous work on general and domain-specific IR
has focused on identification of the key statistical concepts
in verbose queries [3, 4, 5], latent query concepts in exter-
nal resources ([14, 30, 37, 38]) and the top-retrieved (PRF)
documents [5, 17] individually, to the best of our knowl-
edge, no query transformation method that uses both ex-
plicit concepts from the query and latent concepts from di-
verse sources, such as external resources and PRF docu-
ments, has been previously proposed. For example, Latent
Concept Expansion (LCE) [17] and Parameterized Query
Expansion (PQE) [5] methods use only unigrams from the
top-retrieved documents as latent concepts, while [11] uses
only unigrams from structured knowledge bases as latent
concepts for query expansion.

In this work, we propose a novel method to represent
verbose clinical decision support queries using unigram, bi-
gram and multi-term concepts from the query itself, as well
as from the PRF documents and external knowledge bases
(such as the Unified Medical Language System). Our method
is based on linear feature-based learning-to-rank retrieval
framework [18], in which the relative importance weight is
determined for each matching query concept individually as
a linear combination of features. We also propose a set of
features for each concept type, which is determined based on
whether a concept is a unigram, bigram or multi-term phrase



and whether it occurs in the query itself or is extracted from
a top retrieved document or a knowledge base.
Since the parameter spaces of linear feature-based retrieval

models can be reduced to a multinomial manifold, their pa-
rameters can be estimated by direct maximization of the tar-
get rank-based retrieval metric (e.g. NDCG) over this man-
ifold using derivative-free unconstrained multi-dimensional
optimization methods, such as coordinate ascent [19] or hill-
climbing [21]. These methods are based on the Powell’s
method, which divides a complex multi-dimensional opti-
mization problem into several simple one-dimensional ones.
After that, it iteratively optimizes a multivariate objective
function by optimizing each parameter individually, while
holding all other parameters fixed. Since line search is a
local optimization method, the efficiency and accuracy of
both the coordinate ascent and hill-climbing rely on the as-
sumption of smoothness and convexity of objective function
when a free parameter is optimized, which is often violated
in practice. Figure 1, which shows the behavior of the tar-
get retrieval metric by varying the value of a parameter that
corresponds to the weight of a feature, illustrates this case.
It can be seen that the objective function shown in this figure
has several local maxima.
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Figure 1: The values of objective function corre-
sponding to infNDCG retrieval metric by varying
the weight of one of the features (GI presented in
Section 3.3), which determines the importance of
concept matches of certain type.

The optimization method for learning the weights of con-
cept importance features in feature-based retrieval models
proposed in this paper leverages the Graduated Non-Convexity
(GNC) (or continuation) optimization method [6] to ad-
dress the issue of non-smooth and non-convex objective func-
tions, when individual parameters are optimized using the
Powell’s method. GNC is a derivative-free method specif-
ically designed for global optimization of non-smooth and
non-convex objective functions. Graduated Non-Convexity
(GNC) is an iterative method, which applies different de-
grees of smoothing to the original objective function to gen-
erate smoother and more convex objective functions, which
have their global maximum close to the one of the origi-
nal objective function. The method starts by applying the
highest degree of smoothing and then gradually decreases
the rate of smoothing at each subsequent iteration using the
result obtained at the previous iteration as the starting point
for the next iteration until the global maximum for the orig-
inal non-smoothed objective function is found. Although
the quality of the solution attained by this approach heav-
ily depends on the choice of the smoothing method, it was

recently shown that Gaussian smoothing of a non-convex
function is optimal in a sense that it evolves any function
into its convex envelope [20].

The remainder of this paper is organized as follows. After
a brief summary of related work in Section 2, we discuss
the details of the ranking function, the features and the
optimization method to estimate the concept importance
weights in Section 3. Section 4 provides the results of an ex-
perimental evaluation of retrieval accuracy of the proposed
method with respect to the state-of-the-art baselines, while
Section 5 concludes the paper.

2. RELATED-WORK
Depending on the type of concepts used for query expan-

sion, general-purpose and domain-specific retrieval methods
can be categorized into the ones that are based on statisti-
cal concepts (i.e. determined based on term popularity and
co-occurrence in a given collection) [3, 5, 16, 17, 31], the
ones that are based on semantic concepts (i.e. that are ex-
tracted from a knowledge repository) [13, 29, 30, 37], and
those that combine semantic and statistical concepts [7, 25,
34, 9]. Below we provide an overview of the previously pro-
posed methods in each of these 3 categories.

Retrieval methods using statistical concepts. In the
simplest case, these retrieval models utilize only unigrams
from the top retrieved documents for query expansion [31].
More recent retrieval methods utilizing statistical concepts
are based on the Markov Random Field (MRF) framework
introduced by Metzler and Croft [16]. It assigns the same im-
portance weight to all matching statistical query concepts of
the same type (unigrams and sequential bigrams), when the
retrieval score of a document is calculated. Latent Concept
Expansion (LCE) extends MRF by also using unigrams from
the PRF documents as latent concepts for query expansion.
The requirement of having fixed weights for unigrams and
bigram concepts in the MRF-based retrieval model was re-
laxed by the Weighted Sequential Dependence (WSD) model
[4], which estimates the importance of each concept indi-
vidually. A similar relaxation of LCE weights was imple-
mented in the Parameterized Query Expansion (PQE) [5]
model. Overall, query representation methods based on sta-
tistical concepts typically consider unigrams and bigrams in
the query and/or unigrams in PRF documents.

Retrieval methods using semantic concepts. Se-
mantic concepts for query expansion are typically extracted
from domain-specific, such as the Unified Medical Language
System (UMLS) [13], Medical Subject Headings (MeSH) [15]
and Systematized Nomenclature of Medicine-Clinical Terms
(SNOMED-CT) [10], or general-purpose knowledge reposi-
tories, such as Wikipedia [29, 35]. The utility of this type of
concepts has been studied for a variety of medical IR tasks
including medical literature retrieval [27, 38]. UMLS con-
cepts are typically extracted from queries and top-retrieved
documents using MetaMap [1, 8, 13, 28, 29, 32, 33].

Soldaini et al. [29] proposed two methods for medical
literature retrieval that use Wikipedia-based heuristics to
filter out non-medical concepts from the original query and
top retrieved documents. The first method (referred to as
HT in [29] and Wiki-Orig in this work) is a query reduc-
tion method, which retains only those bigram concepts in
the original query that are determined to be health-related
according to a heuristic. On the other hand, the second
method (referred to as HT-PRF in [29] and Wiki-TD in this



work) expands the original query with a number of health-
related concepts that are extracted from the top-retrieved
documents and filtered out using the same heuristic.
Accounting for semantic types of concepts1 can also sig-

nificantly improve the accuracy of query expansion, as they
can be used to filter out the candidate expansion concepts.
The method proposed in [13] (referred to as UMLS-TD in this
work), expands medical queries only with the UMLS con-
cepts extracted from the top retrieved documents that have
pre-selected semantic types. A semantic type is pre-selected
if the concepts of this type improve the accuracy of retrieval
results when added to the queries in the training set. For
example, the semantic type “signs and symptoms” is pre-
selected for a query about the diagnosis of a disease. [32]
proposed another approach to using semantic types in the
query, in which the semantic types of concepts are used to
weight the concepts (concepts that are more likely to be
effective, get higher weight).
Retrieval models using both semantic and statis-

tical concepts. The benefit of integrating semantic and
statistical concepts was shown in [7, 9, 25, 34]. The meth-
ods in [7, 25, 34] focused only on explicit concepts (query
unigrams and bigrams along with UMLS concepts extracted
from the query using MetaMap). A medical IR system that
integrates a graph-based representation of the corpus, struc-
tured knowledge sources and a retrieval model combining
statistical IR methods with an inference mechanism imple-
mented as graph traversal has been proposed in [9].
The key difference of the proposed method from exist-

ing methods for medical literature and ad hoc document
retrieval is that it uses both statistical and semantic con-
cepts extracted from diverse sources (query itself, knowledge
bases and top retrieved documents) for query representation.
The proposed method also leverages an efficient optimiza-
tion technique to learn the relative importance weight of
different types of query concepts on the same scale.

3. METHOD
In this section, we present the details of the proposed

query reformulation method, a set of features used with it
and a method to optimize the weights of those features with
respect to the target retrieval metric. The proposed query
reformulation method combines explicit and latent query
concepts from diverse sources and determines the weight of
each individual concept as a linear combination of features,
which depend on a concept type. The type of a query con-
cept is determined by its source and whether the concept is
represented by a unigram, bigram or multi-word phase. The
set of concept sources considered in our method includes the
query itself, top retrieved documents for the original query,
and external knowledge repositories.

3.1 Retrieval model
To account for term dependencies, the proposed method

adopts a Markov Random Field (MRF) retrieval framework
[16], in which the retrieval score of a document is determined
as a weighted linear combination of the matching scores of
different concept types in a given query. In particular, our
method extends the parametrized concept retrieval model
in [5], according to which the retrieval score of document D

1http://metamap.nlm.nih.gov/SemanticTypesAndGroups.
shtml

with respect to query Q is calculated as:

sc(Q,D) =
∑

T∈TQ

∑

c∈CT

λT (c)fT (c,D) (1)

where CT is a set of concepts belonging to concept type T ,
and λT (c) is defined as the importance weight of concept c,
which depends on its type. In the above equation, fT (c,D)
is the matching score function of concept c in document D,
which is defined as:

fT (c,D) = log((1−λ)
n(c,D) + µ

n(c,Col)
|Col|

|D|+ µ
+λ

n(c, Col)

|Col|
) (2)

where n(c,D) (n(c, Col)) and |D| (|Col|) are the counts of
concept c in document D (entire collection) and the size
of document D (entire collection), respectively. The above
matching function utilizes a two-stage smoothing method
from [36], where λ and µ are Jelinek-Mercer and Dirichlet
smoothing coefficients, respectively. Since only unigrams
as well as ordered and unordered bigrams are considered in
the MRF retrieval framework, concepts that are represented
by multi-word phrases are broken down into unigrams and
sequential bigrams. The set of concept types considered for
a query Q is designated by TQ and is shown in Table 2. This
table also provides information about the concept extraction
methods and a set of features corresponding to each concept
type, which will be explained in detail below.

The importance weight of concept c is parameterized us-
ing a set of importance features ΦT (c). Each concept type T
is associated with its own set of importance features, sum-
marized in Table 1. Thus, the weight of concept c with type
T is determined as a weighted linear combination of impor-
tance features:

λT (c) =

N∑

n=1

w
n
φφn , (3)

where {φ1, . . . , φN} is a set of features for concepts with
type T (i.e., ΦT (c) = {φ1, . . . , φN}), and wn

φ is the im-
portance weight of the n-th feature (i.e., φn). The intu-
ition behind this concept weighting scheme is that differ-
ent concept types have different importance and should be
weighted accordingly. Intuitively, knowledge-based concepts
(such as the UMLS concepts) that are linked from the con-
cepts in the original query should have a different impor-
tance weight than the concepts that are extracted from the
top retrieved documents. Similarly, bigrams corresponding
to UMLS concepts identified in the original query should
be weighted differently than other bigrams in the original
query. On the other hand, features determining the im-
portance of a concept from a graph structured knowledge
repository (e.g. UMLS), like the degree of the node cor-
responding to this concept, are different from the features
that determine the importance of a unigram concept in top
retrieved documents.

3.2 Optimization Method
Learning the feature weights that maximize the target re-

trieval metric on a training data can be considered as a mul-
tivariate optimization problem and is typically addressed by
decomposing it into a set of one-dimensional optimization
problems. Instead of performing a line search along every
single dimension in optimizing a set of feature weights with
respect to the target retrieval metric, we propose to use grad-



uated optimization [6], an efficient global optimization tech-
nique.

3.2.1 Graduated optimization

Graduated optimization is an iterative optimization method
that gradually finds the global optimum of a given objective
function by finding the optima for a series of simplified objec-
tive functions. Each of these simplified objective functions
is obtained from the original objective function by applying
different degree of smoothing to make the original function
more convex. It starts from the solution to the most simpli-
fied optimization problem (i.e., when the maximum degree of
smoothing is applied to the original objective function) and
considers this solution as the starting point for the second
less simplified problem (i.e. less smoothed original objective
function). This process continues until the global optimum
for the original objective function is found. This procedure is
based on the assumption that the global optimum of a given
objective function at the current iteration is close enough to
its global optimum at the next iteration. Therefore, at the
next iteration, the region of the parameter space that is far
enough from the optimum point at the current iteration is
ignored. As a result, a smaller region that is close to the
optimum point at the current iteration is searched for the
optimal parameter setting at the next iteration.

3.2.2 Smoothing method

In case of a univariate optimization problem with a sin-
gle parameter wφ, the smoothed objective function, Ẽ(wφ),
can be obtained by taking sample values from E(wφ), the

original objective function. To compute Ẽ(wφ) at a specific
region around the starting point wφ,0, samples are taken

from Ẽ(wφ) for the following values of wφ:

ws,φ = [wφ,−M , . . . , wφ,0, . . . , wφ,M ] (4)

where

wφ,m = wφ,0 +m∆wφ, m ∈ [−M, . . . ,M ] (5)

and ∆wφ is the sampling interval.
When a polynomial of degree K is used for the smoothed

objective function at point wφ,m:

Ẽ(wφ,m) =
K∑

k=0

akm
k
, m ∈ [−M, . . . ,M ] (6)

The weight ak is determined so that the following Mean
Square Error (MSE) is minimized:

εφ =
1

2M + 1

M∑

m=−M

(Ẽ(wφ,m)− E(wφ,m))2 (7)

As shown in [24], optimal a = [a1, . . . , aM ] is found as:

a = (JTJ)−1JTws,φ , (8)

where J is a Jacobian of the vector [Ẽ(wφ,−M ), . . . , Ẽ(wφ,M )],
and its (m, k)-th element is obtained as

[J]m,k = (m−M)k, m ∈ [0, 2M ], k ∈ [0,K] . (9)

where M , ∆wφ and K control the smoothing rate of the
objective function.
Figure 2 illustrates three iterations of the smoothing pro-

cedure to find the optimal weight for one of the features

(wGI). Points in Figure 2 indicate the samples taken from
the objective function at each iteration, while the solid lines
indicate the smoothed curves (i.e. estimated polynomials).
The maximum of the smoothed curve is found and used as
the starting point for the next iteration. At each subsequent
iteration, the degree of smoothing is reduced by lowering ∆w

from 2.5× 10−2 to 2.5× 10−3 and then to 2.5× 10−4, while
increasing K from 4 to 5 and 6, while keeping M constant
(M = 18). As follows from Figure 2, the smoothing stan-
dard deviation (σ) is decreasing at each iteration of the opti-
mization process, which indicates less smoothing and hence
closer representation to the original objective function.

3.2.3 Multi-variate optimization

The multivariate optimization method to train the weights
of all features with respect to the target retrieval metric is
summarized in Algorithm 1. We denote the vector of feature
weights by wφ = [wn

φ ]
N
n=1. As mentioned earlier, the weight

wn
φ is estimated by using n−1 previously estimated weights

at iteration j (i.e., ŵ1
φ, . . . , ŵ

n−1
φ ) and the N − n estimated

weights at the iteration j−1 (i.e., ŵn+1
φ , . . . , ŵN

φ ). Therefore,
the univariate objective function to estimate the weight wn

φ

can be written as:

E
n,j(wn

φ) = E([ŵ1
φ, . . . , ŵ

n−1
φ , w

n
φ , ŵ

n+1
φ , . . . , ŵ

N
φ ]) (10)

where En,j(wn
φ) is a univariate objective function for the

weight of the n-th feature at the j-th iteration.
As can be seen from Algorithm 1, first explicit and la-

tent concepts of training queries are extracted from differ-
ent sources (line 1) and then wφ is randomly initialized (line
2). At each iteration of the proposed optimization method
(line 3), wφ is randomly shuffled (line 4). After that for
each element of wφ (line 5) and for each sampling policy
(line 6), the objective function (i.e., En,j(wn

φ)) is sampled

at the points wn
s,φ = [wn

φ,m]Mm=−M (line 7). The sampling
policy determines the values of M , K, and ∆w at each it-
eration of the optimization approach. The smoothed objec-
tive function Ẽn,j(wn

φ,m) is obtained using the samples from

En,j(wn
φ) (line 7). Then, the optimum point of Ẽn,j(wn

φ,m)
(i.e., ŵn

φ,m) is estimated (line 9). Next, the n-th element of
wφ is replaced by its estimated value (i.e., ŵn

φ,m) (line 10).
These iterations continue until the number of iterations (i.e.,
j) goes beyond jmax (line 3) or convergence (lines 13-15).

3.3 Features
Table 1 summarizes all distinct features that are used to

calculate the importance weight of each query concept c de-
pending on its type. The list of concept types, which are
determined by concept source, term representation and iden-
tification method, along with a set of features that are used
to calculate the importance weight of query concepts of each
type are shown in Table 2. Concepts belonging to some con-
cept types come from only one source, while other concept
types assume two sources. For example, since the concepts
of type TUU are UMLS concepts that are represented by
unigrams and extracted from the top retrieved documents,
this concept type is associated with two concept sources (top
retrieved documents and UMLS).

As can be seen from Table 2, there are four different meth-
ods for identifying explicit and latent concepts in a query.
The first and simplest method is to consider all unigrams
and bigrams in a query or top retrieved documents as query
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(c) 3rd Iteration

Figure 2: Application of graduated optimization to estimate the weight of the feature GI using TREC 2014
CDS track queries as the training set. Red boxes indicate the range of wGI considered at the next iteration.
σ is defined as the smoothing standard deviation.

Algorithm 1 Algorithm to optimize the feature
weights with respect to the target retrieval metric
using graduated optimization.

1: Identify explicit and latent concepts
2: Randomly initialize the feature weights vector (wφ)
3: for j = 1 : jmax do
4: Randomly shuffle wφ

5: for n = 1 : N do
6: for each sampling policy do
7: Sample En,j(wn

φ)

8: Obtain Ẽn,j(wn
φ,m)

9: Obtain the optimum point ŵn
φ

10: Update n-th element of wφ by ŵn
φ

11: end for
12: end for
13: if Convergence then
14: Break
15: end if
16: end for

concepts. The second approach uses MetaMap [1] to identify
UMLS concepts in a query or top-retrieved documents. The
third approach uses the Wikipedia-based health relatedness
measure defined in [29] as:

hrm(c) =
P (p is health-related|c ∈ p)

1− P (p is health-related|c ∈ p)
(11)

where P (p is health-related|c ∈ p) is the probability that a
Wikipedia page p is health-related given that c occurs in
p. Concepts for which this probability exceeds a pre-defined
threshold are assumed to be health-related. The fourth ap-
proach uses the UMLS relationships table (MRREL.RRF
table2, which we further also refer to as the UMLS concept
graph) to select the concepts related to the UMLS concepts
identified in a query as latent concepts.
All features in Table 1, except Semantic Direction (SD),

Semantic Popularity (SP) and Type Effectiveness (TE), are
relatively simple and do not require a detailed explanation.
Semantic direction is defined as follows. If Sc is the seman-

2http://www.ncbi.nlm.nih.gov/books/NBK9685/

tic type of concept c, So is the semantic type of the query
concept o, to which concept c is related and d(Sr, S) is the
distance (i.e. the number of edges) from the root node (Sr)
to node S in the UMLS semantic network, then the expan-
sion concept c is defined to have an inward direction relative
to the original concept o in the UMLS semantic network
(i.e. the expansion concept is more general than the orig-
inal query concept), if d(Sr, Sc) < d(Sr, So). This feature
is defined only for the UMLS expansion concepts that are
related to the UMLS concepts in the original query.

Semantic popularity of concept c is defined as the num-
ber of concepts that are related to concept c in the UMLS
concept graph (it can also be viewed as a node degree of
concept c in the UMLS concept graph). A large value of
this feature indicates popularity and generality of concept c.
Type effectiveness is a binary feature that indicates whether
the UMLS semantic type of concept c is effective for query
expansion. As defined earlier, a semantic type is effective
if its corresponding concepts can increase the precision of
retrieval results when added to a query. The concept of ef-
fective semantic types for medical query expansion was first
proposed in [13]. Using the training queries and relevance
judgments, we fine tuned the set of effective semantic types
from [13] to the collection and query sets used in this work.
This will be explained in detail later.

4. EXPERIMENTS

4.1 Experimental Setup
The experimental results reported in this work were ob-

tained using the corpus, which includes around 730,000 doc-
uments from PubMed Central (PMC), and queries from the
Clinical Decision Support (CDS) track at TREC 2014 [26]
and 2015 [23]. 3-fold cross-validation was used to evaluate
the performance of the proposed method (INTGR) and the
baselines, which were first trained using the query set and
relevance judgments from the CDS track of TREC 2014 to
maximize infNDCG, the official retrieval metric of the CDS
track [26]. The proposed method and the baselines were
implemented using Indri retrieval toolkit3. The optimal val-

3http://www.lemurproject.org/indri/



Table 1: Brief description of features used to estimate the importance weight of concept c.
Feature Description
TI TF-IDF of concept c in the collection
CA Average collection co-occurrence of concept c with other concepts in the query
CM Maximum collection co-occurrence of concept c with other concepts in the query
NT Number of top retrieved documents containing concept c

RS Sum of retrieval scores of top-ranked documents containing concept c

TM Maximum co-occurrence of concept c with other query concepts in top retrieved documents
TA Average co-occurrence of concept c with other query concepts in top retrieved documents
GI Do infoboxes of Wikipedia articles corresponding to concept c contain any health-related keywords?
IS Does any of the terms of concept c exist in the title of any Wikipedia health-related articles?
CD Average distance between concept c in the UMLS concept graph and other query, top document and related UMLS concepts

identified for a query
SP Popularity (node degree) of concept c in the UMLS concept graph
SD Direction of concept c with respect to query concepts in the UMLS semantic network
TE Does concept c have a UMLS semantic type that is effective for medical query expansion?

Table 2: List of types for explicit and latent query concepts along with a set of features to estimate the
importance of concepts of each type (Top-docs stands for top retrieved documents for the original query).

Concept
Type

Concept Source(s) Concept Repre-
sentation

Concept Extraction Features

QU Query unigrams all query unigrams TI, NT, RS, CA, CM, TA, TM
QOB Query ordered bigrams all query bigrams TI, NT, RS, CA, CM, TA, TM
QUB Query unordered bigrams all query bigrams TI, NT, RS, CA, CM, TA, TM
QUU Query, UMLS unigrams MetaMap TI, NT, RS, CA, CM, TA, TM, TE, SP, CD
QUOB Query, UMLS ordered bigrams MetaMap TI, NT, RS, CA, CM, TA, TM, TE, SP, CD
QUUB Query, UMLS unordered bigrams MetaMap TI, NT, RS, CA, CM, TA, TM, TE, SP, CD
QDU Query, Wikipedia unigrams health-relatedness measure TI, NT, RS, CA, CM, TA, TM, GI, IS
QDOB Query, Wikipedia ordered bigrams health-relatedness measure TI, NT, RS, CA, CM, TA, TM, GI, IS
QDUB Query, Wikipedia unordered bigrams health-relatedness measure TI, NT, RS, CA, CM, TA, TM, GI, IS
TU Top-docs unigrams direct identification TI, NT, RS, CA, CM, TA, TM
TOB Top-docs ordered bigrams direct identification TI, NT, RS, CA, CM, TA, TM
TUB Top-docs unordered bigrams direct identification TI, NT, RS, CA, CM, TA, TM
TUU Top-docs, UMLS unigrams MetaMap TI, NT, RS, CA, CM, TA, TM, TE, SP, CD
TUOB Top-docs, UMLS ordered bigrams MetaMap TI, NT, RS, CA, CM, TA, TM, TE, SP, CD
TUUB Top-docs, UMLS unordered bigrams MetaMap TI, NT, RS, CA, CM, TA, TM, TE, SP, CD
TDU Top-docs, Wikipedia unigrams health-relatedness measure TI, NT, RS, CA, CM, TA, TM, GI, IS
TDOB Top-docs, Wikipedia ordered bigrams health-relatedness measure TI, NT, RS, CA, CM, TA, TM, GI, IS
TDUB Top-docs, Wikipedia unordered bigrams health-relatedness measure TI, NT, RS, CA, CM, TA, TM, GI, IS
UU UMLS unigrams UMLS relationships TI, NT, RS, CA, CM, TA, TM, TE, SP, SD, CD
UOB UMLS ordered bigrams UMLS relationships TI, NT, RS, CA, CM, TA, TM, TE, SP, SD, CD
UUB UMLS unordered bigrams UMLS relationships TI, NT, RS, CA, CM, TA, TM, TE, SP, SD, CD

ues of Dirichlet prior, Jelinek-Mercer interpolation coeffi-
cient, the sizes of ordered and unordered bigram windows in
the Indri query language were empirically determined to be
2500, 0.4, 4 and 17, respectively. Figure 3 illustrates how
infNDCG changes by varying the number of PRF documents
(used to extract concepts) and the number of concepts ex-
tracted from PRF documents. The values of these parame-
ters that maximize infNCDG were used in experiments using
TREC 2015 CDS track queries.
Besides the proposed graduated optimization approach,

we used exhaustive line search to optimize individual feature
weights as another baseline (INTGR-LS). This method exam-
ines the parameter space in uniform increments and chooses
the setting that results in the highest infNDCG. For both
INTGR and INTGR-LS methods, the convergence threshold for
the change in infNDCG was set to 0.001 and the number of
iterations was limited to 20.

4.2 Baselines
The first baseline that was used in experiments is two-

stage smoothing [36] (Two-Stage). Two-stage smoothing
was also used as the smoothing method in implementing all
other baselines and the proposed method. The other base-
lines used in experiments are Relevance Model (RM) [12],
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Figure 3: Average infNDCG on TREC 2014 CDS
track queries by varying the number of top retrieved
documents used to extract the concepts and the
number of UMLS and Wikipedia concepts extracted
from the top retrieved documents.

Parameterized Query Expansion (PQE) [5], Wiki-Orig and
Wiki-TD [29], which use a Wikipedia-based health relat-



edness measure defined in (11). Other baselines that use
only semantic concepts are UMLS-orig [25] and UMLS-TD [13].
UMLS-orig extracts UMLS concepts only from the query
itself and breaks the phrases designating UMLS concepts
into bigrams in order to incorporate them into the SDM re-
trieval model [17]. UMLS-TD extracts UMLS concepts from
the top retrieved documents according to their semantic
types. Since the original implementations of UMLS-TD and
Wiki-TD are based on bag-of-words retrieval models, UMLS-
TD∗ and Wiki-TD∗ are the modifications of UMLS-TD and
Wiki-TD that use the SDM retrieval model to account for
term dependencies when a concept is designated by a phrase.
We also compare the performance of the proposed method

to the best performing methods (which used topic sum-
maries as queries) in the CDS track of TREC in 2014 [22]
and 2015 [2] (designated as TREC best). [22] used an en-
semble of state-of-art unsupervised knowledge-based query
expansion, re-ranking and relevance feedback methods. In
[2], queries are expanded with unigrams and UMLS con-
cepts identified in the query itself and the top retrieved doc-
uments.

4.3 Results
An initial list of 16 semantic types known to be effective

for query expansion in medical records search was taken “as
is” from [13]. We observed from the preliminary experiments
that not all of these semantic types are effective for expan-
sion of CDS queries. Therefore, we fine-tuned this initial
list of semantic types by excluding those semantic types, for
which the corresponding concepts did not improve infNDCG
of retrieval results on training queries. The 5 semantic types
retained from the initial list proposed in [13] are “Clinical
Drug”, “Disease or Syndrome”, “Injury or Poisoning”, “Sign
or Symptom” and “Therapeutic or Preventive Procedure”.
Tables 3 and 4 provide a summary of retrieval accuracy in

terms of different retrieval metrics of the proposed method
(INTGR) and the baselines on the query sets from the CDS
track of TREC 2014 and 2015. As can be seen from Table
3, Wiki-TD∗ is the best performing baseline (since the best
performing TREC methods are different for different query
sets, they are not considered as the best performing base-
lines). Furthermore, the proposed algorithm outperforms
INTGR-LS and the best methods in TREC 2014 and 2015.
Table 4 shows the degree of improvement and its sta-

tistical significance of the proposed method over the three
best performing baselines (i.e., PQE, Wiki-TD, Wiki-TD∗) and
INTGR-LS. As follows from Table 4, INTGR significantly out-
performs all of the best performing baselines in terms of all
retrieval metrics. Using graduated non-convexity as a uni-
variate optimization method results in 5-9% improvement
of retrieval accuracy in terms of infNDCG, 10-23% improve-
ment in terms of infAP and 8% improvement in terms of
P@5 on different query sets.
Table 5 illustrates the effect of using different knowledge

bases in conjunction with INTGR on its performance in terms
of different evaluation metrics. As follows from Table 5, us-
ing INTGR only with Wikipedia results in the smallest im-
provement of retrieval accuracy across all retrieval metrics
(and even a decrease of P@5). It also follows from this table
that using INTGR with UMLS results in significantly greater
improvement of all retrieval metrics, while the biggest im-
provement is achieved when explicit and latent concepts of
a query are extracted from both UMLS and Wikipedia.

Figure 4 provides performance comparison of INTGR with
all of the baselines in terms of P@k for k from 1 to 10 (with
a step size of 1). As can be seen from this figure, for all
values of k except k = 1 in case of TREC 2014 CDS track
queries, INTGR significantly outperforms all other baselines.
It also follows from Figure 4 that for most of the values
of k, the methods that expand the queries with the con-
cepts extracted from the top-ranked documents (RM, UMLS-
TD, UMLS-TD∗, PQE, Wiki-TD, Wiki-TD∗ and INTGR) outper-
form the methods that represent the queries with the con-
cepts extracted from them (Wiki-Orig and UMLS-orig). The
average improvements of INTGR in terms of P@k for differ-
ent values of k over the weakest and strongest baselines are
0.1560 and 0.0380, respectively, on the query set from TREC
2014 CDS track, while on the query set from TREC 2015
CDS track the improvements are 0.0988 and 0.0481, respec-
tively.

Figure 5 illustrates topic level differences between the re-
trieval accuracy of INTGR in terms of infNDCG with the best
performing baselines (Wiki-TD∗ for the CDS track of TREC
2014 and PQE for the CDS track of TREC 2015) on both
query sets. From Figure 5(a), it follows that infNDCG of
INTGR is greater than that of Wiki-TD∗ on 67% of the queries
in the CDS track of TREC 2014, while from Figure 5(b) it
follows that infNDCG of INTGR is greater than that of PQE
on 73% of the queries in the CDS track of TREC 2015. The
average improvement of INTGR over Wiki-TD

∗ in terms of
infNDCG on TREC 2014 CDS track queries is 0.0518 with
standard deviation 0.12, while the average improvement of
INTGR over PQE in terms of infNDCG on TREC 2015 CDS
track queries is 0.0345 with standard deviation 0.0734. The
topics, on which INTGR has the greatest improvement and
decline relative to Wiki-TD∗ in terms of infNDCG among
those used in TREC 2014 CDS track are 16 (with 0.4593
improvement) and 14 (with 0.1462 decline). We can also
observe that on the query set of TREC 2015 CDS track
INTGR has the greatest improvement of 0.3026 and the great-
est decline of 0.0512 in terms of infNDCG on topics 6 and 8,
respectively. Figure 6 also provides a detailed comparison of
retrieval accuracy of INTGR in terms of infNDCG with the
best performing baselines (Wiki-TD∗ for TREC 2014 CDS
track and PQE for TREC 2015 CDS track) at the level of
each individual topic in the CDS track of TREC 2014 and
2015.

We continued empirical evaluation of INTGR by analysis
of its performance on difficult queries. We define a query
as difficult if infNDCG of Two-Stage on this query is less
than 0.1 and as very difficult if infNDCG of Two-Stage is
less than 0.05. We observed that INTGR outperformed Wiki-

TD
∗ on 59% of difficult queries and on 86% of very difficult

queries in the CDS track of TREC 2014. We also observed
that INTGR outperformed PQE on 56% of difficult queries and
on 77% of very difficult queries in CDS track of TREC 2014.

4.4 Discussion
Based on experimental analysis of INTGR presented in the

previous section, we can conclude that the subset of UMLS
semantic types that are effective for expansion of CDS queries
is fairly small (includes less than 4% of UMLS semantic
types). These semantic types can be grouped into three cat-
egories: “Disorders”, “Chemical & Drugs” and “Procedures”.
These three categories in turn can be conceptually mapped



Table 3: Summary of retrieval accuracy of the proposed method and the baselines on the query sets from
the CDS track of TREC 2014 and 2015.

Query set TREC 2014 CDS track TREC 2015 CDS track
Method infNDCG infAP P@5 infNDCG infAP P@5
Two-Stage [36] 0.1945 0.0493 0.3533 0.2110 0.0449 0.4200
Wiki-Orig [29] 0.2069 0.0550 0.3533 0.2193 0.0457 0.4133
UMLS-Orig [25] 0.2074 0.0569 0.3867 0.2206 0.0478 0.4400
RM [12] 0.2662 0.0836 0.4400 0.2765 0.0740 0.4600
UMLS-TD [13] 0.2577 0.1523 0.4067 0.2429 0.0748 0.4600
UMLS-TD∗ 0.2724 0.0810 0.4133 0.2503 0.0614 0.4667
PQE [5] 0.2796 0.0873 0.4733 0.2792 0.0762 0.4400
Wiki-TD [29] 0.2764 0.0881 0.4467 0.2418 0.0597 0.4267
Wiki-TD∗ 0.2883 0.0944 0.4600 0.2519 0.0633 0.4600
TREC best [22, 2] 0.2631 0.0757 0.4067 0.2928 0.0777 0.4467
INTGR-LS 0.3114 0.0993 0.4867 0.2987 0.0792 0.4800
INTGR 0.3401 0.1229 0.5267 0.3135 0.0873 0.5200

Table 4: Statistical significance and improvement in retrieval accuracy of the proposed method (INTGR)
relative to its modification (INTGR-LS) and three best performing baselines (Wiki-TD, PQE and Wiki-TD∗)
on the query sets from the CDS track of TREC 2014 and 2015. ⋆ and † indicate statistically significant
improvement with p < 0.05 and p < 0.1, respectively.

Query set TREC 2014 CDS track TREC 2015 CDS track
Method infNDCG infAP P@5 infNDCG infAP P@5
Wiki-TD 23.05%⋆† 39.50%⋆† 17.91%⋆† 29.65%⋆† 46.23%⋆† 23.81%†
PQE 21.64%⋆† 40.78%⋆† 11.28%† 12.28%† 14.56%⋆ 18.18%⋆†
Wiki-TD∗ 17.97%⋆† 30.19%⋆† 14.50%⋆† 24.45%⋆† 37.91%⋆† 13.04%⋆†
INTGR-LS 9.22%⋆† 23.77%⋆† 8.22%⋆† 4.95%⋆† 10.22%⋆ 8.33%⋆†

Table 5: Comparison of effectiveness of different knowledge bases on the query sets from the CDS track of
TREC 2014 and 2015.

Query set TREC 2014 CDS track TREC 2015 CDS track
Method infNDCG infAP P@5 infNDCG infAP P@5

INTGR using no knowledge bases 0.2673 0.0875 0.4601 0.2771 0.0758 0.4633
INTGR using only Wikipedia 0.2975 0.0936 0.4533 0.2954 0.0779 0.4667

(11.30%) (6.97%) (-1.47%) (6.60%) (2.77%) (0.09%)
INTGR using only UMLS 0.3309 0.1170 0.5200 0.3012 0.0786 0.5033

(23.79%) (33.71%) (13.02%) (8.67%) (3.93%) (7.93%)
INTGR using UMLS and Wikipedia 0.3401 0.1229 0.5267 0.3135 0.0873 0.5200

(27.23%) (40.46%) (14.47%) (13.14%) (15.17%) (11.52%)

to the three main types of CDS queries: “Diagnosis”, “Treat-
ment” and “Test”.
From tables 3 and 4, it follows that the proposed query

representation method significantly outperforms all base-
lines in terms of all evaluation metrics and on both training
and evaluation query sets. Furthermore, although INTGR

was trained on the CDS track queries of TREC 2014 with
the goal of maximizing infNDCG, INTGR also achieved sig-
nificant (and, in many cases, even greater) improvement
over the baselines in terms of other evaluation metrics (i.e.,
infAP and P@5) on both training and testing query sets.
Also, as can be seen from Tables 3 and 4, the proposed
method has significantly better performance when it is used
in conjunction with graduated optimization method (INTGR)
than when it is used with exhaustive line search (INTGR-
LS), which we attribute to the ability of graduated opti-
mization to efficiently find global optima of non-smooth and
non-convex objective functions. Line search, on the other

hand, may miss global optima, if the step size is not suffi-
ciently small. In general, choosing the appropriate step-size
is non-trivial and can dramatically affect the performance of
line search.

As follows from Table 3, methods that utilize semantic
(Wiki-TD/Wiki-TD∗ and UMLS-TD/UMLS-TD∗) and statistical
(RM and PQE) concepts for query representation and expan-
sion behave differently on training and evaluation query sets.
In particular, methods using semantic concepts show better
results than the methods based on statistical concepts on
the training query set, while the methods based on statis-
tical concepts show better results on evaluation query set.
However, the proposed method (INTGR) provides excellent
results on both query sets, which indicates the utility of ac-
counting for both types of concepts in a retrieval method for
CDS queries. On the other hand, Table 5 demonstrates that
for the methods based on semantic concepts, UMLS is a bet-
ter choice than Wikipedia with respect to all metrics, if only
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Figure 4: Comparison of INTGR with the baselines in terms of P@k for k ≤ 10 on the query sets from the
CDS track of TREC 2014 and 2015.
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Figure 5: Topic-level differences of the infNDCG values for INTGR and the best-performing baselines (Wiki-
TD∗ for TREC 2014 CDS track and PQE for TREC 2015 CDS track).
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Figure 6: Topic-level comparison of the infNDCG values for INTGR, the best performing baselines (Wiki-TD∗

for TREC 2014 CDS track and PQE for TREC 2015 CDS track).

one knowledge repository is used. However, as follows from
Table 5, combining both knowledge bases results in better
retrieval accuracy than using any one of them individually.
Although from Figures 4 and 5 as well as Tables 3 and

4 it follows that INTGR has slightly lower accuracy improve-

ment over its best-performing baseline and Two-Stage on
the testing query set than on the training query set, the
improvement that INTGR achieves over Two-Stage is much
higher than the improvement of the best performing base-
line over Two-Stage. However, as follows from Figures 6 and



5, there is a greater number of topics on which INTGR has
better retrieval accuracy than the best performing baseline
on both training and testing query sets. Therefore, based on
these observations, we can conclude that INTGR is robust to
overfitting, due to its use of multiple and diverse relevance
signals and concept sources.

5. CONCLUSION
In this paper, we proposed a method to represent CDS

queries using statistical and semantic concepts from the query,
top retrieved documents and knowledge bases. Our work
logically extends previous research, which focused only on
studying the utility of statistical query concepts [4], semantic
query concepts [3], statistical and semantic query concepts
[7], statistical [17, 5] and semantic [29] concepts from the
query and top retrieved documents for query expansion. Ex-
periments using a collection of PubMed articles and TREC
Clinical Decision Support (CDS) track queries indicate that
the proposed method significantly outperforms state-of-the-
art baselines for ad hoc and medical IR.
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