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ABSTRACT

The problemof ad-hoc structured document retrieval arises inmany

information access scenarios, fromWeb to product search. Yet nei-

ther deep neural networks, which have been successfully applied

to ad-hoc information retrieval and Web search, nor the attention

mechanism, which has been shown to signi�cantly improve the

performance of deep neural networks on natural language process-

ing tasks, have been explored in the context of this problem. In this

paper, we propose a deep neural architecture for ad-hoc structured

document retrieval, which utilizes attention mechanism to deter-

mine important phrases in keyword queries as well as the relative

importance of matching those phrases in di�erent �elds of struc-

tured documents. Experimental evaluation on publicly available

collections for Web document, product and entity retrieval from

knowledge graphs indicates superior retrieval accuracy of the pro-

posed neural architecture relative to both state-of-the-art neural

architectures for ad-hoc document retrieval and probabilistic mod-

els for ad-hoc structured document retrieval.
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1 INTRODUCTION

The problemof structured (ormulti-�eld) document retrieval (SDR)

arises in many information access scenarios, from Web search to

entity retrieval from a knowledge graph. However, previous in-

formation retrieval (IR) research has largely viewed documents as

holistic and homogeneous fragments of text. Retrieval models that
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adopt this holistic view aim at quantifying relevance through ag-

gregation of a small number of relevance heuristics, such as the

number and proximity of occurrences of query terms, their col-

lection statistics and document length. Accounting for document

structure requires additional strategies for aggregating these heuris-

tics, which are calculated at the level of document �elds, into the

matching score of an entire document. Such aggregation is informed

by a relative importance of document �elds, which can be inferred

from either the properties of document �elds (e.g. a query term

matched in a �eld of a Web page with the terms highlighted in

larger font should have a di�erent importance than a query term

matched in other �elds) or query intent (e.g. in the query “attrac-

tive outdoor light with security features”, “attractive” refers to the

product description �eld, “outdoor light” to the product name �eld

and “security features” to the product attributes �eld). The ability

to take into account document structure makes SDR methods par-

ticularly e�ective for retrieving documents with lexically similar,

but semantically diverse �elds (e.g. descriptions of products or en-

tities in a knowledge graph).

SDR methods face three major challenges: i) identifying the key

phrases in keyword queries ii) semantic matching of the key query

phrases in di�erent �elds of structured documents iii) aggregating

the scores of the matched query phrases into the overall score of a

structured document. Di�erent probabilistic and language model-

ing based models for structured document retrieval [14, 23, 24, 28,

45] have been proposed over the past decade to address some of

these challenges. However, all these methods are based on direct

matching of terms and phrases in queries and documents, which

may lead to the issue of lexical gap, when semantically similar

concepts are communicated using di�erent words and phrases in

queries and relevant documents. To address this issue, several neu-

ral architectures have been recently proposed for ad-hoc document

retrieval [7–9, 30, 38, 40] and Web search [6, 12, 21, 32, 44]. These

architectures typically take dense continuous vector representa-

tions (i.e. embeddings) of words in queries and documents as input

and quantify relevance by applying a series of non-linear trans-

formations to those representations to obtain the document re-

trieval score. A combination of word embeddings and representa-

tion learning for semantic matching endows neural architectures

with the ability to e�ectively address the issue of lexical gap with-

out relying on traditional IR approaches, such as dimensionality

reduction [16], query [3] or document [2] expansion. Incorpora-

tion of additional retrieval heuristics, such as inverse document fre-

quency (IDF) of query terms, and features, such as retrieval scores

of bag-of-words retrieval models andword overlap, have been shown
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to improve the retrieval accuracy of neural architectures even fur-

ther [9]. However, deep neural architectures for retrieval of struc-

tured documents are only starting to be explored. The only such ar-

chitecture that we are aware of was proposed by Zamani et al. [44],

which is themost relevant paper to ourwork. However, their model

is tailored to artifacts speci�c toWeb search, such as varying num-

ber of document �elds, and utilizes user behavior data, such as

clicks, in document representation and for training.

This paper takes a di�erent route and focuses on exploring the

utility of the attentionmechanism, which has been previously shown

to be e�ective in natural language processing [1, 29] and com-

puter vision [39] tasks, in modeling important aspects of relevance

in structured document retrieval, such as dynamic importance of

query phrases and document �elds. In particular,we proposeAtten-

tion-based Neural Architecture for Ad-hoc Structured Document

Retrieval (ANSR)1, which attends to the most important query

phrases and �elds of structured documents in order to quantify

their relevance to a keyword query. Based on the interaction matri-

ces between phrases in a query and document �elds, our proposed

architecture computes the matching score of document �elds with

respect to a query at multiple levels of granularity and aggregates

those scores into thematching score of a structured document. Our

proposed architecture also incorporates collection statistics to dy-

namically attend to di�erent query phrases and �elds of a docu-

ment based on a given query.

This work provides the following contributions:

• To the best of our knowledge, we present the �rst deep neu-

ral architecture for ad-hoc SDR, which can be used in the

absence of user interaction data for training. The proposed

architecture addresses the issue of lexical mismatch, which

plagues traditional probabilistic and languagemodeling-based

ad-hoc SDR models.

• We experimentally demonstrate the e�ectiveness of atten-

tionmechanismwithin neural rankingmodels for structured

documents at identifying important query phrases and doc-

ument �elds.

Roadmap. The rest of this paper is organized as follows. Section 2

provides an overview of the prior work on structured document

retrieval and neural networks for IR. Our proposed deep neural

architecture for structured document retrieval is presented in Sec-

tion 3. Results of experimental evaluation of the proposed archi-

tecture on multiple datasets are presented in Section 4. Section 5

concludes the paper.

2 RELATED WORK

In this section, we provide an overview of previous work on proba-

bilistic and machine learning-based models for SDR, deep learning

for IR and attention mechanism in neural architectures.

Probabilistic models for SDR. Numerous probabilistic and lan-

guage modeling-based models, such as BM25F [28], Mixture of

Language Models (MLM) [24], Probabilistic Retrieval Model for

SemistructuredData (PRMS) [14], aswell asmachine learning-based

methods [23, 26, 34, 36, 37, 45] have been proposed for structured

document retrieval over the past decade. While early methods [24,

26, 28, 34, 36, 37] assume bag-of-words document representation,

1source code available at https://github.com/teanalab/ANSR

more recent methods, such as Fielded Sequential Dependence Model

(FSDM) [45] and Parameterized Fielded Sequential DependenceModel

(PFSDM) [23], additionally take into account sequential dependen-

cies between the query terms. These methods compute the match-

ing score of structured documents in two ways: (1) as a weighted

linear combination of �eld scores computed by a standard retrieval

model, such as BM25 [28], query likelihood [24] or sequential de-

pendence model [45] (2) directly based on the weighted linear com-

bination of retrieval heuristics, such as query term frequency in

each document �eld [28].

NeuralArchitectures for TextMatching andDocumentRank-

ing. The recent success of deep learning has revitalized research

on semantic text matching and document ranking. The pioneering

work on neural architectures for semantic text matching, such as

DeepMatch [17], ARC-I/ARC-II [11], DCNN [13],MultiGranCNN [42]

and MatchPyramid [25] laid a foundation for subsequent e�orts

aimed at developing neural architectures for document ranking in

Web search [6, 12, 21, 32, 44] and ad-hoc IR [7–9, 30, 38, 40]. The

two major classes of these architectures are representation-based

and interaction-based.

DSSM [12] is an example of a representation-based architecture

and one of the �rst neural architectures for Web search. DSSM

takes word hashing based representations of a query and docu-

ments as input and employs a Siamese architecture consisting of

multiple fully connected layers to learn semantic representations

of queries and documents, which are then used to measure rele-

vance between themwith cosine similarity. Similar to DSSM, ARC-

I [11] �nds representations of texts with a Siamese architecture

consisting of multiple convolutional layers and uses these repre-

sentations as input to a multi-layer perceptron (MLP), which deter-

mines the degree of semantic match. Other representation-based

neural architectures for text matching or document ranking in-

clude CDSSM [32] and DCNN [13] .

Interaction-based architectures take a matrix of similarities be-

tween embeddings of all pairs of words in a document and a query

or in a pair of texts as input. DeepMatch [17] is an example of

interaction-based architecture, which models the matching score

between a pair of texts as a hierarchy of semantic similarity scores

between all pairs of words in them. ARC-II [11], similar to Deep-

Match, computes thematching score based on the interaction space

between a pair of texts. It was shown in [11] that ARC-II, an interaction-

based architecture, has a superior retrieval accuracy than ARC-I,

a representation-based architecture, which was attributed to the

e�ectiveness of local matching patterns between a pair of texts.

Other interaction-based neural architectures for text matching or

document ranking includeMatchPyramid [25],MultiGranCNN [42],

DRMM [9], K-NRM [38] and Conv-KNRM [7].

ANSR, the proposed architecture, can also be categorized as inter-

action-based, however, unlike other interaction- or representa-tion-

based neural architectures for IR [7, 9, 12, 32, 38], ANSR takes into

account document structure.

Attention andGating inNeuralNetworks.The attentionmech-

anism, which allows neural architectures to focus on the most im-

portant parts of contextual information, was �rst proposed for ma-

chine translation [1] and later successfully utilized in neural ar-

chitectures for other tasks, such as image [39] and video caption-

ing [43], text summarization [29] aswell as question answering [40].
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Yang et al. [41] proposed a two-level Hierarchical Attention Net-

work, which allows to attend di�erently to words and sentences.

The attention-based neural architecture for matching questions

with answers proposed by Yang et al. [40] combines interaction

matrix between question and answer with the attention scheme

based on a softmax gating function to model the importance of

question terms.

Inspired by the gating mechanism in Long Short-Term Memory

(LSTM) and Gated Recurrent Unit (GRU) architectures, neural net-

works in [4, 9, 31, 33, 35] include gating units to regulate infor-

mation �ow. Gated neural networks have also been utilized in a

variety of information retrieval scenarios. For example, Sheldon

et al. [31] introduced a gated neural network based score combi-

nation function that weighs di�erent query reformulations when

merging them into the �nal ranked list. Guo et al. [9] proposed a

neural ranking model, which utilized a gating function to weigh

the contributions of matching scores of query terms towards the

matching score of an entire document based on their IDF, and

demonstrated that such gating results in signi�cant improvement

of retrieval accuracy.

3 METHOD

3.1 Overview

ANSR quanti�es the relevance of a structured document to a given

keyword query by aggregating semantic matching scores at dif-

ferent resolution levels. Semantic matching scores between query

phrases and document �elds at a lower resolution level are trans-

formed into the matching scores at a higher resolution level by

fully connected attention and aggregation layers until the �nal doc-

ument relevance score is obtained. First, ANSR computes semantic

matching scores of two types of query phrases in each of the doc-

ument �elds. Query phrases of the �rst type consist only of query

terms (i.e., unigrams), while query phrases of the second type con-

sist of two-word (i.e. sequential) bigrams. Second, the matching

scores of each unigram- and bigram-based query phrase in di�er-

ent document �elds are aggregated into a single matching score

based on the relative importance weights of di�erent document

�elds, which are determined by the document �eld attention layer.

Third, semantic matching scores of all unigram- and bigram-based

query phrases are combined into two aggregate matching scores

for these types of query phrases. Finally, the aggregate matching

scores of unigram and bigram-based query phrases are combined

into the �nal relevance score of an entire document based on the

relative importance weights of these two types of query phrases,

which are determined by the query phrase attention layer. Account-

ing for both unigram and bigram query concepts has been previ-

ously shown to improve retrieval accuracy for both ad-hoc [19]

and structured document retrieval [45].

The input to thematching score aggregation component ofANSR

shown in Figures 1 is a set of similarity matrices representing in-

teractions between distributed representations of a query and each

one of the nf document �elds. There are several options for rep-

resenting queries and document �elds and computing similarity

matrices, which di�er in computational complexity and the num-

ber of parameters in the resulting neural architecture. The simplest

way is to represent queries and document �elds with embeddings

of their constituent words and compute one similarity matrix per

each document �eld, in which the entries are cosine similarities be-

tween embeddings of all pairs of words in a query and a document

�eld. However, in this case, the dimensions of similarity matrices

and the number of trainable parameters in the resulting neural ar-

chitecture will vary with the size of the corresponding document

�elds.

Table 1: Table of Notations

Notation De�nition

nf number of �elds in document d

nq number of n-grams in query q

nl number of n-grams in the l th document �eld

r̂
q compressed distributed representation of q

r̂
q
i ith embedding vector in r̂

q

r̂
l compressed distributed representation of the l th docu-

ment �eld

r̂
l
j jth embedding vector in r̂

l

M̂
l compressed similaritymatrix between a query and the l th

document �eld

M̂
l
i, : ith row of M̂l

n̂f number of compressed similarity matrices

n̂q number of rows in compressed similarity matrices

n̂l number of columns in compressed similarity matrices

ξ number of dimensions in word embedding vectors

m( ·, ·) the matching score between two objects

To address the issue of varying sizes of query-document �eld

similarity matrices and decrease the number of trainable param-

eters, ANSR includes the pooling component, which creates com-

pressed similarity matrices of the same �xed dimensions for each

document �eld, as described in Section 3.2. The entries in each com-

pressed similarity matrix are pair-wise similarity metrics between

embedding vectors in compressed distributed representations of a

query and a document �eld. Each embedding vector in these com-

pressed representations is created by combining the embeddings of

several adjacent unigrams and bigrams in a query or a document

�eld and can be viewed as corresponding to a phrase in a query or

a document �eld.

Compressed similaritymatrices constructed by the pooling com-

ponent of ANSR are used as input to the matching score aggrega-

tion and attention components, which will be described in more

detail in Section 3.3. By considering the matching scores between

compact representations of a query and document �elds and em-

ploying weight sharing, ANSR minimizes the number of trainable

parameters to enable e�ective training with a limited amount of

training data, which is typical for ad-hoc IR scenarios. Next, we

discuss pooling, aggregation and attention components of ANSR

in more detail.

3.2 Pooling component

The output of the pooling component consists of two compressed

similarity matrices M̂l
u ∈ R

n̂q×n̂l and M̂
l
b
∈ Rn̂

q×n̂l , where n̂q ≤

nq and n̂l ≤ nl , for each document �eld l . These matrices are

created from unigram- (ûq and û
l ) and bigram-based (b̂q and b̂

l )
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Figure 1: Sub-network of the matching score aggregation

component of ANSR for unigram-based compressed dis-

tributed query representation. Sub-network for calculating

the matching score of bigram-based query representation

has similar structure and is not shown.

compressed distributed representations of a query and the l th doc-

ument �eld, respectively. The matching score aggregation and at-

tention components of ANSR that process either of these two sim-

ilarity matrices are identical. Therefore, we will henceforth use

the notation r̂
q to refer to the compressed n-gram (unigram or

bigram) based distributed query representation, r̂l to refer to the

compressedn-gram based distributed representation of the l th doc-

ument �eld and M̂
l to refer to the compressed similarity matrices

for the l th document �eld.

Each compressed similarity matrix M̂
l is created in two steps.

In the �rst step, the pooling functions fq and fd create �xed-size

compressed distributed representations for a query and the l th doc-

ument �eld, respectively. The functions fd and fq replace a set of

embeddings of consecutive n-grams (unigrams or bigrams) within

the windows of size ⌈nl/n̂l ⌉ and ⌈nq/n̂q⌉ in a query and the l th doc-

ument �eld, respectively, with a single embedding vector obtained

by averaging the embeddings of n-grams within these windows.

Speci�cally, function fd :

fd : Rn
l×ξ 7→ Rn̂

l×ξ , ∀l ∈ {1, . . . ,nf } , (1)

compresses the embeddings of nl consecutive n-grams in the l th

document �eld into n̂l embeddings r̂lj , such that each r̂
l
j is an aver-

age over ⌈nl/n̂l ⌉ consecutive n-grams. Similarly, function fq :

fq : Rn
q×ξ 7→ Rn̂

q×ξ , (2)

compresses the embeddings of nq consecutive query n-grams into

n̂q embedding vectors r̂
q
i , such that each r̂

q
i is an average over

⌈nq/n̂q⌉ consecutive n-grams.

M̂
l
i, j , the (i, j)th entry of M̂l corresponds to cosine similarity

between r̂
q
i and r̂

l
j :

M̂
l
i, j =

r̂
q
i r̂

l
j





r̂
q
i




2





r̂
l
j




2

(3)

Alternatively, the entries of M̂l can be viewed as semantic simi-

larities between phrases in a query and a document �eld. The abil-

ity to account for interactions between phrases in queries and doc-

uments sets ANSR apart from the traditional methods for docu-

ment [19] and structured document [23, 45] retrieval, which con-

sider only unigrams and bigrams.

If nl < n̂l , zero-padding is performed by adding n̂l − nl zero

columns to M̂l . If a document d is missing �eld l , M̂l with zero en-

tries is created. In the end, the pooling component of ANSR creates

n̂f compressed similarity matrices with n̂q rows and n̂l columns.

3.3 Matching score aggregation and attention
components

The relevance score s (q,d ) of query q to documentd based on com-

pressed similarity matrices {M̂1, . . . , M̂n̂f } for each document �eld

is computed by matching score aggregation as well as document

�eld and query phrase attention components of ANSR. Each ag-

gregation or attention component consists of one fully-connected

hidden layer and one output layer. tanh is used as a non-linear

function.

3.3.1 Matching score aggregation components. ANSR includes the

following matching score aggregation components:

• DF-MLP: computesm(û
q
i ,d ) and m(b̂

q
i ,d ) by aggregating

the matching scores of û
q
i and b̂

q
i , respectively, in di�erent

�elds of d ;

• QN-MLP: computesm(ûq ,d ) andm(b̂q ,d ) by aggregating

m(û
q
i ,d ) andm(b̂

q
i ,d ) for all i , respectively;

• QD-MLP: computes s (q,d ) by aggregatingm(ûq ,d ) andm(b̂q ,d ).

Since after pooling each query is represented with n̂q embed-

ding vectors, the network has n̂q DF-MLP components. Given the

ith rows of each M̂
l as input, the ith DF-MLP component com-

putesm(û
q
i ,d ) by taking into account the importance weights of

document �elds determined by the document �eld attention com-

ponent. The outputs of DF-MLP components are used as inputs

to the QN-MLP components to computem(ûq ,d ) andm(b̂q ,d ) by

taking into account the importance weights of embedding vectors

in query representation determined by the query phrase attention

component. The two outputs of the QN-MLP components are used

as input to QD-MLP to compute s (q,d ).

3.3.2 A�ention components. ANSR includes the following atten-

tion components:

• DF-ATT: computes the importance weights of document

�elds for aggregating the matching scores of û
q
i and b̂

q
i in

di�erent document �elds;

• QP-ATT: computes the importance weights of embedding

vectors r̂
q
i in r̂

q for computing the matching score of a doc-

ument with respect to the unigram- or bigram-based com-

pressed distributed query representation.
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Figure 2: Document �eld attention component of ANSR.
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Figure 3: Query phrase attention component of ANSR.

The DF-ATT attention component shown in Figure 2 computes

wl , the importance weight of the l th document �eld for computing

the aggregate matching score of each r̂
q
i in the entire document as:

wl
=

exp (el )
∑n̂f

k=1
exp (ek )

(4)

where

el = fdf −att (r̂
l , {r̂1, . . . , r̂n̂

f
}) (5)

and fdf −att (·) represents the layers that compute el , intermediate

weight of the l th �eld, based on r̂
l , the compressed representation

of that �eld.

The input to the ithDF-MLP component consists of {M̂1
i, :, . . . , M̂

n̂f

i, : },

which correspond to the similarity vectors between r̂
q
i and each r̂

l
j

in r̂
l , weighed bywl computed by the DF-ATT attention module.

Similarly, the QP-ATT attention component shown in Figure 3

computesw
q
i , the importance weight of r̂

q
i , the ith embedding vec-

tor in unigram- or bigram-based compressed distributed query rep-

resentation r̂
q for computing the aggregated matching score of r̂q

in the entire document as:

w
q
i =

exp (e
q
i )

∑n̂q

k=1
exp (e

q

k
)
, (6)

where

e
q
i = fqp−att (r̂

q
i , {r̂

q
1 , . . . , r̂

q

n̂q
}) . (7)

and fqp−att (·) represents the layers that compute e
q
i , intermediate

weight of the ith embedding vector, based on all embedding vectors

in r̂
q .

3.3.3 Regulating the impact of poolingand zero-padding. Zero-pad-

ding and pooling operations described in Section 3.2 to generate

compressed similarity matrices need to be regulated to avoid the

problem of favoring longer �elds since: (1) a large �eld is twice

more likely to have k relevant n-grams than equivalently relevant

short �eld that is half its size, which biases the pooling operation

to favor longer �elds and (2) zero-padding adds n̂l − nl zeros to

the interaction matrix which makes it equivalent to a �eld of size

n̂l with n̂l − nl n-grams that are not relevant to a query. To com-

pensate for the above side-e�ects of pooling and zero-padding for

documents with the �elds of di�erent lengths, we use �eld length

to regulate the �eld importance weight, so that s (q,d ) becomes

less dependent on the lengths of document �elds. To do so and to

compensate for the e�ect of zero-padding in documents with the

number of �elds smaller than n̂f , we update the weights in the

document �eld attention component:

wl ← wl ×
n̂l

nl
×
n̂f

nf
. (8)

3.4 Model training

Besides the weights in DF-ATT and QP-ATT attention components

(W
(DF )
ATT

,W
(QP )
ATT

), three sets ofweights (W(DF ),W(QN ) , andW(QD ))

should be estimated for theDF-MLP, QN-MLP, andQD-MLPmatch-

ing score aggregation components. Therefore, the set of trainable

parameters in ANSR is:

W = {W
(DF )
ATT
,W

(QP )
ATT
,W(DF ),W(QN ),W(QD )} . (9)

To reduce the number of trainable parameters in the network, all

DF-MLP and QN-MLP components share the same weights. There-

fore, without considering bias, each DF-MLP component in ANSR

has n̂f n̂l neurons in its input layer, n̂f neurons in its hidden layer

and one neuron in its output layer, which results inW
(DF ) consist-

ing of n̂f (n̂f n̂l + 1) weights. Similarly, we assume that QN-MLP

has n̂q nodes in its input and hidden layer and one node in its out-

put layer, which results in W
(QN ) having n̂q (n̂q + 1) weights. Fi-

nally, QD-MLP has two neurons in its input and hidden layers and

one neuron in its output layer, therefore W(QD ) has 6 weights. In

total, the weight matrices in score aggregation components have

n̂f (n̂f n̂l +1)+n̂q (n̂q +1)+6 trainable parameters. Therefore, since

we have n̂q DF-MLP and two QN-MLP, by applying the weight

sharing strategy to components of the same type, we need to esti-

mate n̂f (n̂f n̂l + 1)(n̂q − 1) + n̂q (n̂q + 1) fewer weights.

Figure 4: Given a triplet of relevant and non-relevant doc-

uments with respect to a query, we obtain their relevance

scores and optimize a hinge loss function to train the net-

work. The retrieval networks share weights and have the ar-

chitecture shown in Figure 1.

As can be seen from Figure 4, we optimize a loss function that

depends on the triplets of relevant and non-relevant documents

given a query, i.e., <q,dn,dr>, where dn and dr are the documents

in the training data that are judged as non-relevant and relevant,

respectively.

Therefore, the set of triplets in our training data is as follows:

T =
{
<q,dni ,d

r
i> | (q,d

n
i ) ∈ S

n; (q,dri ) ∈ S
r, i = 1, . . . ,T

}
,

(10)



Table 2: Summary of collections, query sets and relevance

judgments used for experimental evaluation. The last col-

umn provides the names of document �elds in each collec-

tion.

Name # Docs Queries # Rel. Fields

Judg.

GOV2 25.2M 701–850 135K full, inlink, metakd,

doctitle, alt, largefont

DBpedia-v2 3.5M 1–467 49K names, rel. categories,

similar entity names,

entity name, attributes

HomeDepot 55K 1–1000 3K title, description,

attribute

where T is number of triplets in our training data, and Sn and Sr

are the sets of non-relevant and relevant query-document pairs.

We de�ne the hinge loss function for each triplet <q,dn,dr> in

training data as:

lq (d
n,dr) = max(0, ζ −s (q,dr)+s (q,dn)), <q,dn,dr> ∈ T (11)

where ζ is a margin between the relevance scores of relevant and

non-relevant documents with respect to a query. We obtain ζ = 1

by using the validation set. We compute the loss function given all

possible triplets in the training data as:

Lq (W ) =
∑

<q,dn,d r>∈T

lq (d
n,dr) . (12)

By considering an additional regularizer term in the above objec-

tive function, we de�ne the optimization problem in our training

process as:

min
W

(

∑

<q,dn,d r>∈T

max(0, ζ − s (q,dr) + s (q,dn)) +
γ

2
| |W||22

)

,

(13)

where γ is a constant that corresponds to weight decay. We set

γ = 0.0005 in our experiments.

4 EXPERIMENTS

We evaluated ANSR in the context of three di�erent structured doc-

ument retrieval scenarios: Web search, product search, and entity

retrieval from a knowledge graph. For experiments, we used three

publicly available benchmarks of di�erent sizes: GOV2, DBpedia-

v2, and HomeDepot.We compare the performance of ANSR and its

variations with the state-of-the-art probabilistic models for struc-

tured document retrieval and neural architectures for structured

and unstructured document retrieval.

4.1 Baselines

4.1.1 Neural and probabilistic baselines. The goal of this experi-

mental evaluation is to investigate the performance of neural ar-

chitectures for structured document retrieval when human-labeled

relevance judgments are used instead of user behavior data (e.g.

click-throughs) for training. Therefore, with the exception of NRM-

F [44], we focus on the baselines that were designed for the scenar-

ios in which the user behavior data is not available. Speci�cally,

we compare ANSR with PRMS [14], MLM [24], BM25F [28] and

FSDM [45]. The parameters of these baselines are trained by using

the coordinate ascent [20].We also consider DRMM [9], DESM (IN-

OUT, trained on queries) [22] and NRM-F∗ [44], which is NRM-

F [44] trainedwithout using click-through data. AlthoughDESM [22]

uses query logs to obtain word embeddings, it does not require

click data. Both DESM [22] and NRM-F∗ [44] were evaluated under

telescoping [18] settings. It is notable that NRM-F assumes that all

documents have the same number of �elds, which does not allow

for a pre-trained network to be adopted in the case when struc-

tured documents have di�erent number of �elds.

4.1.2 Variations of ANSR. We obtain the �rst variation of ANSR,

called ANSR-na, by removing the attention network from the ar-

chitecture of ANSR, i.e., by assigning the same weights to all �elds

and to all embedding vectors in the compressed query represen-

tation regardless of their relative importance to the retrieval task.

In ANSR-no-pooling, instead of using our pooling strategy, we

select the �rst n̂l terms from each document �eld and �nd their

matching scores with respect to a query. Inspired by the systematic

comparisons in [5], we also evaluate the e�ectiveness of our pro-

posed architecture relative to its count-based version, calledANSR-

count. InANSR-count, we utilize histogram-based (LCH) approach

proposed in [9] and modify the process of creating �xed-size sim-

ilarity matrices M̂l . To do so, M̂l , which is now a matching his-

togram matrix with the size n̂q × n̂l , is obtained by �rst group-

ing the matching signals {Ml
i, j | j ∈ {1, . . . ,nl }} in each row

of Ml into a �xed number of strength levels and then applying

logarithm to the counts. For example, if n̂l = 3 and we consider

[0.8,−0.1,−0.4, 0.75] as the i-th row of Ml , the i-th row of M̂l be-

comes [log(1 + 1), log(1 + 1), log(1 + 2)] since we have 1, 1 and

2 matching signals with the strength levels between (−1,−0.33),

(−0.33, 0.33) and (0.33, 1), respectively, and 1 is added to all count

values to avoid unde�ned values. For ANSR-count, we consider

n̂l = 30 as suggested in [9]. Finally, we also considerANSR-unigrams,

in which the �nal relevance score only depends on the aggregated

matching scores of embedding vectors in unigram-based compressed

query representation.

4.2 Experimental setup

We used TensorFlow r1.22 to implement the proposed attentive

neural architecture for structured document retrieval. To trainANSR,

we ran Adam [15] for 150 epochs with a learning rate of 0.001

and a batch size of 100. For a fair comparison, we use the same

pre-trained word embeddings obtained for Dual Embedding Space

Model (DESM)model3 by Nalisnick et al. [22] in DRMM and ANSR.

To avoid over-�tting, we use drop-outwith a rate of 0.2.We applied

ANSR to re-rank the top 2000 documents, which were initially re-

trieved using BM25F [28]. We trained the parameters of the base-

lines on the same collections that we trained ANSR. We used ten-

fold cross-validation to tune the hyper-parameters of ANSR, such

as n̂l and n̂q , as well as hyper-parameters of the baselines, sepa-

rately for each collection. We used MAP, P@10, NDCG@10, and

b-pref as evaluation metrics.

2https://www.tensor�ow.org/versions/r1.2/
3https://www.microsoft.com/en-us/download/details.aspx?id=52597

https://www.tensorflow.org/versions/r1.2/
https://www.microsoft.com/en-us/download/details.aspx?id=52597


Table 3: Performance of ANSR and the baselines on GOV2, HomeDepot, and DBpedia collections. Statistically signi�cant

improvements in terms of MAP of ANSR over FSDM and DRMM measured by the Fisher’s randomization test with α = 0.05

are indicated by “⋆” and “†”. Percentage improvements over FSDM and DRMM are shown in parentheses.

GOV2

MAP P@10 NDCG@10 b-pref

L
M
-b
as
ed

M
et
h
o
d
s PRMS [14] 0.1964 0.4058 0.3448 0.2489

MLM [24] 0.2908 0.5648 0.4729 0.3539

BM25F [28] 0.2954 0.5478 0.4556 0.3493

FSDM [45] 0.3012 0.5817 0.4789 0.3572

N
eu
ra
l

M
et
h
o
d
s DESM [22] 0.2968 (-1.46%) 0.5714 (-1.77%) 0.4575 (-4.47%) 0.3505 (-1.88%)

DRMM [9] 0.3113 (3.35%) 0.5880 (1.08%) 0.4722 (-1.40%) 0.3591 (0.53%) g

NRM-F∗ [44] 0.1491 (-50.50%) 0.2903 (-50.09%) 0.2132 (-55.48%) 0.1792 (-49.83%)

P
ro
p
o
se
d

M
et
h
o
d

V
ar
ia
ti
o
n
s

ANSR-na 0.3074 (2.06%/-1.25%) 0.5755 (-1.07%/-2.13%) 0.4794 (0.10%/1.52%) 0.3682 (3.08%/2.53%)

ANSR-static 0.2934 (-2.59%/-5.75%) 0.5691 (-2.17%/-3.21%) 0.4647 (-2.97%/-1.59%) 0.3556 (-0.45%/-0.97%)

ANSR-count 0.3183⋆ (5.68%/2.25%) 0.5952 (2.32%/1.22%) 0.4894 (2.19%/3.64%) 0.362 (1.34%/0.81%)

ANSR-unigrams 0.3166⋆ (5.11%/1.70%) 0.5949 (2.27%/1.17%) 0.4907 (2.46%/3.92%) 0.3711 (3.89%/3.34%)

ANSR 0.3246⋆† (7.77%/4.27%) 0.6023 (3.54%/2.43%) 0.4937† (3.09%/4.55%) 0.3756⋆† (5.15%/4.59%)

Home-depot

MAP P@10 NDCG@10 b-pref

L
M
-b
as
ed

M
et
h
o
d
s PRMS [14] 0.2287 0.108 0.2641 0.877

MLM [24] 0.2476 0.1183 0.2893 0.9161

BM25F [28] 0.2537 0.1201 0.2952 0.9231

FSDM [45] 0.2591 0.1206 0.3024 0.9206

N
eu
ra
l

M
et
h
o
d
s DESM [22] 0.2349 (-9.34%) 0.1107 (-8.21%) 0.2769 (-8.43%) 0.8943 (-2.86%)

DRMM [9] 0.2484 (-4.13%) 0.1131 (-6.22%) 0.2952 (-2.38%) 0.9034 (-1.87%)

NRM-F∗ [44] 0.1536 (-40.72%) 0.0723 (-40.05%) 0.1832 (-39.42%) 0.4272 (-53.60%)

P
ro
p
o
se
d

M
et
h
o
d

V
ar
ia
ti
o
n
s

ANSR-na 0.2511 (-3.09%/1.09%) 0.1154 (-4.31%/2.03%) 0.2946 (-2.58%/-0.20%) 0.8935 (-2.94%/-1.10%)

ANSR-static 0.2489 (-3.94%/0.20%) 0.1072 (-11.11%/-5.22%) 0.2858 (-5.49%/-3.18%) 0.8935 (-2.94%/-1.10%)

ANSR-count 0.2821⋆† (8.88%/13.57%) 0.1247† (3.40%/10.26%) 0.3174⋆† (4.96%/7.52%) 0.9352 (1.59%/3.52%)

ANSR-unigrams 0.2726⋆† (5.21%/9.74%) 0.1278⋆† (5.97%/13.00%) 0.3168⋆† (4.76%/7.32%) 0.9342 (1.48%/3.41%)

ANSR 0.2846⋆† (9.84%/14.57%) 0.1377⋆† (14.18%/21.75%) 0.3204⋆† (5.95%/8.54%) 0.9585† (4.12%/6.10%)

DbPedia-v2

MAP P@10 NDCG@10 b-pref

L
M
-b
as
ed

M
et
h
o
d
s

PRMS [14] 0.2934 0.3594 0.4126 0.3142

MLM [24] 0.3467 0.3887 0.4365 0.3547

BM25F [28] 0.3799 0.4077 0.4605 0.3902

FSDM [45] 0.3679 0.4073 0.4524 0.3748

N
eu
ra
l

M
et
h
o
d
s DESM [22] 0.3523 (-7.27%) 0.3894 (-4.49%) 0.4527 (-1.69%) 0.3621 (-7.20%)

DRMM [9] 0.3682 (-3.08%) 0.4012 (-1.59%) 0.4515 (-1.95%) 0.3895 (-0.18%)

NRM-F∗ [44] 0.1878 (-50.57%) 0.2092 (-48.69%) 0.2402 (-47.84%) 0.1802 (-53.82%)

P
ro
p
o
se
d

M
et
h
o
d

V
ar
ia
ti
o
n
s ANSR-na 0.3824 (0.66%/3.86%) 0.4057 (-0.49%/1.12%) 0.4447 (-3.43%/-1.51%) 0.3792 (-2.82%/-2.64%)

ANSR-static 0.3765 (-0.89%/2.25%) 0.3964 (-2.77%/-1.20%) 0.4339 (-5.78%/-3.90%) 0.3635 (-6.84%/-6.68%)

ANSR-count 0.3921† (3.21%/6.49%) 0.4194† (2.87%/4.54%) 0.4632 (0.59%/2.59%) 0.3932 (0.77%/0.95%)

ANSR-unigrams 0.3912† (2.97%/6.25%) 0.4134 (1.40%/3.04%) 0.4703† (2.13%/4.16%) 0.4103† (3.31%/3.49%)

ANSR 0.3992⋆† (5.08%/8.42%) 0.4256† (4.39%/6.08%) 0.4812† (4.50%/6.58%) 0.4118⋆† (5.54%/5.73%)

4.3 Collections

We evaluated the retrieval accuracy of ANSR on three di�erent

tasks. We adopted GOV24 as a Web search collection, HomeDe-

pot5 as a product search collection, and DBpedia-v26 as an entity

retrieval collection. These collections are summarized in Table 2.
4http://ir.dcs.gla.ac.uk/test_collections/
5https://www.kaggle.com/c/home-depot-product-search-relevance/data
6https://github.com/iai-group/DBpedia-Entity

http://ir.dcs.gla.ac.uk/test_collections/
https://www.kaggle.com/c/home-depot-product-search-relevance/data
https://github.com/iai-group/DBpedia-Entity
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Figure 5: Topic-level di�erence in retrieval accuracy between ANSR and FSDM on three di�erent collections.
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Figure 6: The e�ect of the pooling size (k) on the performance of ANSR and ANSR-no-pooling.

Table 4: Performance of ANSR and best-performing base-

lines (in terms of MAP) on di�cult queries in GOV2, Home-

Depot and DBpedia-v2. Statistically signi�cant improve-

ments of ANSRmeasured by the Fisher’s randomization test

with α = 0.05 over these baselines are indicated by by “⋆” and

“†”. Percentage improvements are shown in parentheses.

GOV2

MAP P@10 NDCG@10 b-pref

FSDM 0.0381 0.0533 0.052 0.0293

DRMM 0.03 0.0466 0.0552 0.0244

ANSR 0.0448⋆† 0.0626⋆† 0.0782⋆† 0.0429⋆†

(17%/49%) (17%/34%) (50%/41%) (46%/75%)

HomeDepot

MAP P@10 NDCG@10 b-pref

FSDM 0.0344 0.015 0.0372 0.7801

DRMM 0.0289 0.0131 0.0384 0.6923

ANSR 0.0402⋆† 0.0194⋆† 0.0575⋆† 0.8031†

(16%/39%) (29%/48%) (54%/49%) (2%/16%)

DBpedia-v2

MAP P@10 NDCG@10 b-pref

BM25F 0.1032 0.1583 0.1832 0.115

DRMM 0.0935 0.252 0.0923 0.2498

ANSR 0.1631 ⋆† 0.2609⋆† 0.2196⋆† 0.2642⋆

(58%/74%) (64%/3%) (19%/137%) (129%/5%)

The publicly available benchmark for entity retrieval from knowl-

edge graph, described in detail in [10], is composed of 113 queries

aiming at speci�c entities, 99 keyword queries, 115 queries aim-

ing at the list of entities and 140 natural language questions. In

this dataset, 7K documents are judged as highly relevant, 10K as

relevant, and 33K as non-relevant. We use DBpedia 2015–10 as

the knowledge graph [10] for the entity retrieval task. There are

135K available relevance judgments, 19.89% of which are relevant

or somewhat relevant in GOV2. Finally, the HomeDepot collection

is more balanced with 1.4K relevant, 3K somewhat relevant, and

1.5K non-relevant judgments. We convert the relevance judgments

in all training datasets into binary (relevant or non-relevant) ones.

We created six-�eld documents in the case of GOV2 collection,

�ve-�eld document for each entity in DBpedia-v2 collection, and

three-�eld document for each product in HomeDepot collection.

As described in Table 2, in GOV2, the �eld “full” contains all the

content of a document, “doctitle” �eld contains the title of a docu-

ment, “largefonts” �eld contains all the text in a font larger than

normal, “metakd” �eld contains documentmeta-data , “inlink” �eld

contains all the incoming hyper-links to a document, and “alt” �eld

contains the alternative texts for all images in a document. The con-

tents of the �elds in DBpedia-v2 entity description documents are

obtained using the method in [45]. Finally, documents in HomeDe-

pot collection have three �elds, with the “attribute” �eld obtained

by concatenating all attributes of each product.

4.4 Comparison with baselines

In Table 3, we compare the performance of our method with prob-

abilistic baselines on three ad-hoc structured document retrieval

tasks. Depending on the collection and the retrieval task, we ob-

serve that FSDM, a state-of-the-art probabilistic structured docu-

ment retrieval model,may not outperformBM25F.However, ANSR



demonstrates statistically signi�cant improvement over all base-

lines with respect to the majority of evaluation metrics in all re-

trieval tasks. We mainly attribute the improvement of ANSR over

FSDM and BM25F to the fact that ANSR uses neural networks and

embedding vectors of unigrams and bigrams in query and collec-

tion documents to compute the relevance score, which helps in

bridging the lexical gap.

Table 3 indicates that, regardless of the collection and retrieval

task, ANSR performs signi�cantly better than other neural base-

lines and the best performing neural baseline is DRMM. As shown

in [44], NRM-F outperforms probabilistic retrieval models, such as

BM25, in scenarios that involve abundant click-through data. How-

ever, due to the sensitivity of NRM-F to the training data size, we

observe in Table 3 that NRM-F∗ does not attain its superior per-

formance over probabilistic methods when a limited number of

relevance judgments is available for ad-hoc retrieval tasks. As fol-

lows from Table 3, interaction-based architectures, such as ANSR

and DRMM, can be adequately trained even with limited training

data, partially due to their smaller size compared to representation-

based architectures, such as NRM-F . The improvement of DRMM

and ANSR over DESM, shown in Table 3, can be attributed to uti-

lization of the collection-dependent training data by DRMM and

ANSR.

Figure 5 demonstrates topic-level di�erences betweenANSR and

the best performing structured document retrieval baseline (FSDM)

in terms of the average precision for all three retrieval tasks. As

follows from this �gure, ANSR has higher average precision than

FSDM for 45.33% of the queries in GOV2. In this collection, the

magnitude of improvements in average precision is 1.66 times greater

than the magnitude of reductions. This result highlights superior

ability of ANSR to deal with long �eld documents, due to utiliza-

tion of compressed representations and explicit correction of the

pooling bias. Similar observations can be made with respect to

the topic-level di�erences in average precision between ANSR and

FSDM in the case of the other two collections. Speci�cally, ANSR

improves the average precision of 44.00% and 58.88% of queries in

the case of HomeDepot and DBpedia-v2 collections, respectively.

In these collections, the magnitude of improvements in average

precision over all queries is 1.26 and 1.51 higher, than the magni-

tude of reductions. Since HomeDepot and DBpedia-v2 have signif-

icantly longer queries than GOV2, this result highlights the e�ec-

tiveness of ANSR in the case of verbose and descriptive queries.

4.4.1 Di�icult queries. In this work, we consider a query as dif-

�cult if the average precision of MLM on this query is less than

0.05. According to this de�nition, 7.38% of queries in GOV2, 7.7% of

queries in HomeDepot, and 29.3% of queries in DBpedia-v2 are dif-

�cult. Table 4 illustrates the performance of ANSR in comparison

with the best performing baselines in Table 3 (according to MAP)

only on di�cult queries. This table indicates the superior perfor-

mance of ANSR over the baselines on all the collections (particu-

larly on DBpedia-v2), which is as a result of considering unigram-

and bigram- based query phrases and using the attention mecha-

nism to focus on the most important query parts.

4.4.2 Best and worst performing queries. Due to space constraints,

we highlight the best and worst performing queries for ANSR in

comparison to FSDM according to the average precision only in

the case of HomeDepot collection. The best performing query for

ANSR is “single lever hole bathroom sink faucet”, which has only

one relevant document with the title “Belle Foret Single Hole 1-

Handle High Arc BathroomVessel Faucet in Chromewith Metal Lever

Handles” in relevance judgments. This document has longer �elds

than the average �eld length in this collection, which can be an in-

dication that the superior performance of ANSR over FSDM is due

to its ability to better handle documents that have longer �elds.

The worst performing query for ANSR is “popular”, which also

has only one relevant document with the title “Bloomsz Most Popu-

lar Water Plant Collection (8-Pack)” in relevance judgments. ANSR

was not able to place this document among the top-ranked ones. In-

stead, it ranked the document with the title “South Shore Furniture

Popular Twin Mates Bed in Mocha” as the top-ranked document,

since it has more words that are semantically similar to the query

term “popular”. This can be a consequence of using word embed-

dings by ANSR, which can cause topic drift for very short queries

[27].

4.5 Ablation study

In Table 3, we also provided experimental results for ANSR-na,

which does not use the attention mechanism (or equivalently the

attentionmodule provides the sameweights for all document �elds

and embedding vectors in query representation). This table indi-

cates superior performance of ANSR over ANSR-na, from which

we can conclude that the proposed attention mechanism plays a

critical role in computing the relevance score of a structured doc-

ument with respect to a query.

Table 3 shows that ANSR has a slightly better retrieval perfor-

mance than its count-based variant (ANSR-count). In other words,

it shows that combining the proposed pooling strategy with the

proposed attention mechanism that weighs the rows in the com-

pressed similarity matrices according to �eld importance results in

higher retrieval accuracy than using the histogram-based method.

Figure 6 illustrates the e�ect of the size of the pooling window

(k = ⌈nl/n̂l ⌉) on performance of ANSR and ANSR-no-pooling.

Based on Figure 6 and Table 3, we can conclude that ANSR has

substantially better retrieval accuracy in terms ofMAP thanANSR-

no-pooling. This can be attributed to the fact that, unlike ANSR,

ANSR-no-pooling selects only the �rst terms in each document

�eld. We can also observe from Figure 6 that the optimal value

of k depends on the collection and the retrieval task. Speci�cally,

ANSR in conjunction with our proposed pooling strategy has the

best performance on GOV2, DBpedia-v2 and HomeDepot collec-

tions when k = 10, k = 6 and k = 6, respectively.

A distinctive feature of ANSR is that it takes into account the

matching signals between both unigram- as well as bigram- based

distributed representations of a query and document �elds. In Ta-

ble 3, we quantify the contribution of this feature to the overall

performance of ANSR. Speci�cally, we evaluate the retrieval accu-

racy of ANSR-unigrams, which only considers that matching sig-

nals between unigram-based distributed representations of a query

and document �elds. Comparison of performance of ANSR with

ANSR-unigrams in Table 3 indicates that going beyond the match-

ing signals between only unigram-based query representation and



accounting for sequential dependencies between the terms in a

query and document �elds results in improved retrieval accuracy.

5 CONCLUSIONS

In this paper, we propose an attentive neural architecture for ad-

hoc structured document retrieval, which can be e�ectively ap-

plied to di�erent tasks, such as Web search, product search and

entity retrieval from a knowledge graph. The proposed architec-

ture has modular structure and includes the components to com-

pute the relevance score of a structured document given a key-

word query from the similarity matrices between n-gram based

compressed distributed representations of a query and document

�elds. The proposed architecture also leverages a pooling strategy

to generate �xed-size local interactions between n-gram based dis-

tributed representations of a query and document �elds and em-

ploys an attention mechanism to focus on the most important doc-

ument �elds and query phrases . Extensive experimental evalua-

tion of the proposed architecture and its variations on di�erent

retrieval tasks indicates that the pooling, relevance matching and

attention strategies in the proposed neural architecture result in

signi�cant improvements of retrieval accuracy over state-of-the-

art probabilistic models for ad-hoc structured document retrieval

and neural architectures for document retrieval.
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