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ABSTRACT

Manually and automatically constructed concept graphs (or
semantic networks), in which the nodes correspond to words
or phrases and the typed edges designate semantic rela-
tionships between words and phrases, have been previously
shown to be rich sources of effective latent concepts for query
expansion. However, finding good expansion concepts for a
given query in large and dense concept graphs is a challeng-
ing problem, since the number of candidate concepts that
are related to query terms and phrases and need to be ex-
amined increases exponentially with the distance from the
original query concepts. In this paper, we propose a two-
stage feature-based method for sequential selection of the
most effective concepts for query expansion from a concept
graph. In the first stage, the proposed method weighs the
concepts according to different types of computationally in-
expensive features, including collection and concept graph
statistics. In the second stage, a sequential concept selec-
tion algorithm utilizing more expensive features is applied
to find the most effective expansion concepts at different
distances from the original query concepts. Experiments on
TREC datasets of different type indicate that the proposed
method achieves significant improvement in retrieval accu-
racy over state-of-the-art methods for query expansion using
concept graphs.

CCS Concepts

•Information systems → Query reformulation;

Keywords

Query Analysis; Query Expansion; Semantic Networks; Feature-
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1. INTRODUCTION
Vocabulary mismatch and underspecified queries, which

contain only a fraction of concepts that represent the in-
formation need (henceforth referred to as explicit concepts),
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are the two most common reasons for inaccurate and incom-
plete search results. Synonyms of explicit concepts, as well
as other concepts that are relevant to the information need,
but are not mentioned in the query (henceforth referred to
as latent concepts), can be extracted either from the top re-
trieved documents [4, 7, 20, 14] or from external knowledge
repositories [8, 12, 28, 29, 30], such as knowledge bases and
semantic networks, and added to a query through the pro-
cess known as query expansion. Knowledge bases and knowl-
edge graphs can be very effective for entity-bearing queries
and are primarily utilized by first linking queries to entities
in a knowledge graph [10, 25] and then enriching the query
with elements of textual entity representations, including
entity names, the names of related entities, categories and
structured attributes [8, 29]. Leveraging general-purpose
or domain-specific semantic networks or concept graphs, in
which the nodes correspond to words or phrases and the
typed edges designate semantic relationships between them,
is an alternative approach to query expansion that we focus
on in this work. Such approach is applicable to any query,
since it does not require a query to contain entities that can
be linked to a knowledge base.

Concept graphs can be constructed manually (e.g. Con-
ceptNet [17]), or automatically from a given collection [1,
2, 11, 12] by considering any pair of terms or phrases that
frequently co-occur in the same context (e.g. document) as
semantically related. Concept graphs are utilized for query
expansion by selecting the concepts related to the ones oc-
curring in the query. However, since concept graphs are typi-
cally dense [17], there can be a large number of concepts that
are immediately related to the query concepts. Although it
has been previously shown that there exist very effective ex-
pansion concepts in remote layers of concepts related to the
original query concepts (i.e. concepts with one or more in-
termediate concepts between them and the query concepts)
[12], the number of candidate concepts that need to be eval-
uated increases exponentially with the number of layers to
consider. However, only a small fraction of hundreds or po-
tentially thousands of concepts that can be discovered in all
layers of related concepts in the concept graph can improve
retrieval results, while others need to be discarded to avoid
noise and concept drift [13, 22, 23]. Figure 1 illustrates this
problem for the query “poach preserve wildlife”, which we
will use as an example throughout this work. According to
ConceptNet 5, there are 374 concepts in the first layer of
related concepts (that are directly related to the query con-
cepts). Some of these concepts, such as “hunt” and “nature
preserve”, are relevant to the information need behind this



query and are useful expansion concepts. However, other re-
lated concepts, such as “boil”, “injure”, “keep”, “album” are
not relevant to the information need behind this query and
should be discarded. The concepts in the third layer, such
as “capture” and “wildlife sanctuary” that are also related to
the information need behind this query should be separated
from many other non-relevant concepts in this layer, even
though some of these non-relevant concepts are related to
the useful concepts in the second layer.

Figure 1: Fragment of the concept graph of Con-
ceptNet 5 showing the concepts related to the con-
cepts in the query “poach wildlife preserve”. The
first number in parenthesis indicates concept layer,
the second number is the index of a concept in the
concept layer.

Therefore, accurate evaluation and effective pruning of
noisy concepts to find a small number of highly effective
concepts for query expansion are the two fundamental chal-
lenges in effective utilization of concept graphs for query
expansion. In this paper, we propose a two-stage method
that addresses these challenges. The proposed method is
illustrated for the case of our example query in Figure 2.
In the first stage of the proposed method, all concepts

in each concept layer are first sorted according to a qual-
ity measure calculated using a number of computationally
inexpensive features, such as TF-IDF. Then, in the second
stage of the method, a concept selection method that re-
lies on more computationally expensive features is applied
to sequentially select a set of expansion concepts from the
concepts in each layer that are sorted in the first stage. This
method selects the concepts from each layer in a one-by-one
manner while maintaining the desired level of precision and

minimizing the number of concepts that need to be exam-

ined. Therefore, a limited number of concepts are examined
in each layer using computationally expensive features and a
limited number of them are selected as expansion concepts.
To improve the efficiency and avoid topic drift, only the con-
cepts that are related to the concept selected in layer i are
considered in layer i+ 1. As a result, the proposed method
avoids calculating computationally expensive features, such
as average mutual information, for a large number of con-
cepts in concept layers that are further away from the orig-
inal query concepts.
The remainder of this paper is structured as follows. First,

in Section 2 we discuss the previous work related to this
study. Existing concept-based query expansion approaches
and the proposed two-stage method for sequential query ex-
pansion are presented in detail in Section 3. The features
used in both stages of the proposed method, a method to

optimize their weights with respect to the target retrieval
metric and the results of an experimental evaluation of the
proposed method are presented in Section 4, while Section 5
concludes the paper with a summary of the key results and
contributions.

2. RELATED WORK
Concept graphs are widely used in domain-specific [3] and

general-purpose [8, 12] information retrieval (IR) systems.
They provide structured knowledge that is necessary to fill
in the gap between the information provided by a user in the
form of a query and the information required by a retrieval
system in order to return complete and accurate results.
Concept graphs can be constructed from a document collec-
tion as in [2, 11, 12]; semantic network, such as ConceptNet
[2, 12]; or from an entity-centric knowledge graph, such as
DBpedia [2] or Freebase [2]. Since there can be a very large
number of concepts in a concept graph that are related to
a query, traditional methods for concept selection from the
top retrieved documents, such as the one proposed in [7] and
[30], that exhaustively evaluate all candidate concepts can
be quite inefficient.

To tackle the difficulty of examining a large number of
concepts, simple approaches [16, 26] utilizing external in-
formation to prune useless expansion concepts have been
previously proposed for domain-specific IR. Experimental
evaluation of these methods have shown that it is possible
to achieve a significant improvement in retrieval accuracy
by pruning the candidate concepts with certain properties,
such as semantic types. In particular, a medical IR sys-
tem proposed in [26] discards candidate expansion concepts
from the top retrieved documents that are determined to be
unrelated to healthcare based on a simple Wikipedia-based
heuristic. The method proposed in [16] does not consider
the candidate concepts from the Unified Medical Language
System concept graph, the semantic type of which does not
belong to a pre-determined list of semantic types known to
be effective for specific medical tasks associated with med-
ical record search queries. Since general-purpose retrieval
systems operate with a larger and more diverse set of con-
cept and query types than domain-specific ones, they can-
not effectively prune candidate expansion concepts based on
simple heuristics.

Query expansion methods utilizing general-purpose entity-
centric knowledge graphs, such as DBpedia and Freebase,
have been extensively investigated in recent years [8, 28, 29,
30]. These methods require annotations of the queries (and,
in some cases, also of the documents) with links to Freebase
entities, which makes them ineffective for the queries that
are ambiguous, broad or do not contain proper nouns des-
ignating named entities that can be linked to a knowledge
graph.

Kotov and Zhai [12] studied the retrieval effectiveness of
expansion concepts from ConceptNet that are related to the
query concepts thorough one or several intermediate con-
cepts. In particular, their method first sorts all ConceptNet
concepts, which are related to the query concepts through
at most 2 intermediate concepts, according to predicted av-
erage precision (AP) of retrieval results after adding each
concept, and uses the top 100 concepts with the highest
predicted AP to create a query expansion language model.
They found out that, although the majority of the concepts
in the second and third concept layers do not improve the
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Figure 2: Illustration of the proposed two-step concept selection method for a set of related concepts in
Figure 1.

accuracy of retrieval results, there are several highly effec-
tive concepts in these layers. However, finding them requires
evaluation of a large number of concepts.
Sequential analysis (and active learning, its closely related

area) have been adopted by many methods to deal with very
large datasets. These methods aim to minimize the cost (or
time) spent on obtaining reasonably accurate results. In IR,
these methods have been applied to minimize (or reduce)
the relevance feedback effort (i.e. the number of relevance
judgments of retrieved documents), while maintaining an ac-
ceptable level of retrieval accuracy [5, 15, 27, 32]. Diaz [9]
proposed a method that sequentially selects query expan-
sion terms from the top retrieved documents and achieves
a significant improvement over standard pseudo-relevance
feedback (PRF) approaches.

3. METHOD
Due to a large number of candidate concepts that are re-

lated to the original query concepts, finding effective expan-
sion concepts in a concept graph is a challenging problem,
particularly since most of the candidate concepts have zero
or negative effect on the accuracy of retrieval results, when
they are used for query expansion. The proposed query ex-
pansion method is based on the idea of sequential examina-
tion of concepts in different layers of a concept graph with
respect to the original query concepts. It first evaluates the
related concepts at each relationship layer by using a number
of inexpensive features and then chooses subsets of related
concepts to be evaluated carefully by using more expensive
features. The method aims to minimize the total number
of concepts evaluated in each layer, while maintaining the
precision of retrieval results above a given threshold. This
way, selection of effective expansion concepts can be formu-
lated as an optimization problem, in which the objective is

to minimize the total number of evaluated concepts subject
to precision of retrieval results being above a given thresh-
old.

In this section, we present the details of our proposed
method to address the problem of selection of effective ex-
pansion concepts from dense, large and noisy concept graphs.
First, we discuss the details of the adopted query expansion
model and then present the methods to construct concept
graphs and use them for sequential selection of query expan-
sion concepts.

3.1 Query Expansion
The proposed method is based on the Latent Concept Ex-

pansion (LCE) [20] framework. LCE was designed to incorpo-
rate the query expansion terms from the top retrieved doc-
uments into Markov Random Fields-based retrieval models
[19], which allow to account for term dependencies. The
proposed method uses the following scoring function of doc-
ument D with respect to query Q:

s(Q,D) =
k
∑

i=0

αi

Mi
∑

j=1

fi(D,C(i,j)) (1)

where αi is the weight of the concepts in the i-th concept
layer, k is the number of concept layers that are involved in
the concept selection process, and Mi is the number of con-
cepts in the i-th concept layer. C(i,j) in the above equation
is the j-th concept in the i-th concept layer. Let us define
Ci = {C(i,j)}

Mi
j=0 as the set of concepts in the i-th concept

layer. In this case, C0 contains all the unigrams in a given
query. Retrieval models using unigrams only utilize C0. C1

includes the query concepts that can be found in the concept
graph.



A query is expanded with a limited number of concepts
selected in each concept layer 1 ≤ i ≤ k. In the above
formula, fi(D,C(i,j)) is the matching score of concept C(i,j)

in document D. Let us define

g(κ,D) = log

(

tfκ,D + µ cfκ
|C|

|D|+ µ

)

(2)

as the matching score of concept κ with respect to docu-
ment D. In the above equation, g(κ,D) is the log-likelihood
of κ in the language model of D smoothed using Dirichlet
prior smoothing, µ is the Dirichlet prior, |D| is the length
of document D and |C| is the number of documents in a
collection. κ can be a unigram w, ordered #uw(b) or un-
ordered #od(b) bigram b. Any other n-gram concepts are
represented in terms of these three concept types. For exam-
ple, the concept “wild life preserve” is decomposed into a set
of unigrams (“wild”, “life”, “preserve”) and a set of bigrams
(“wild life”, “life preserve”). Therefore, the matching score
of document D with respect to concept C(i,j) is defined as:

fi(D,C(i,j)) = γT
∑

w∈C(i,j)

g(w,D) +

+γU
∑

b∈C(i,j)

g
(

#uw(b), D
)

+γO
∑

b∈C(i,j)

g
(

#od(b), D
)

(3)

where γT , γO and γU are the weights of unigrams, ordered
and unordered bigrams, respectively. By replacing Dirichlet
smoothing in (2) with Jelinek-Mercer smoothing and con-
sidering only the concepts from the top retrieved documents
as expansion concepts, we obtain the same retrieval function
as used in the original LCE model [20].
The proposed method for query expansion consists of two

stages. In the first stage, candidate expansion concepts are
ordered with respect to a quality measure (defined below),
while a sequential selection method to find the expansion
concepts is applied in the second stage. As a result, only
the concepts that are likely to be useful expansion concepts
are evaluated in detail. Therefore, the key idea behind the
proposed method is to use computationally inexpensive fea-
tures to initially sort all related concepts and a combination
of computationally expensive and inexpensive features to se-
quentially evaluate them and select the final set of concepts
for query expansion. Sorting of the concepts in Stage I of
the proposed method provides an initial understanding of
concept usefulness, which is utilized in Stage II to minimize
the number of evaluated concepts. These two stages as well
as different methods to construct the concept graph are ex-
plained in more detail below.

3.2 Concept Graphs
Concept graphs used in experiments were constructed in

two different ways. One way is to use a manually created
semantic network, such as ConceptNet [17]. In this case,
we only considered English concepts. If there is a link be-
tween the two concepts in ConceptNet, they are considered
as related concepts in the concept graph.
The other way to construct a concept graph is to use a

collection itself [11]. Only unigram concepts are used in the
concept graph in this case. We used Hyper-space Analogue

to Language (HAL) similarity measure [6] as a measure of
semantic relatedness between the concepts. HAL considers
two concepts as highly related if they frequently appear to-
gether within a sliding window of certain size (typically, 20
words) throughout a given document collection.

3.3 Sequential Concept Expansion
When concept graphs are large and dense, a very large

number of concepts needs to be evaluated to select the use-
ful expansion concepts. If we define C

u as the set of useful
concepts (i.e., those that increase the precision of retrieval
results, if added to a query) and C as the set of all concepts
in a concept graph, then the optimal solution to the concept
selection problem is obtained by examining all possible sub-
sets of expansion concepts with size 0 to |C|. To obtain this

optimal solution, 2|C| subsets of concepts should be evalu-
ated, which is clearly infeasible for any meaningful number
of concepts.

A simplified suboptimal solution for the concept selection
problem is to evaluate only the concepts that are directly
related to the query concepts via a number of intermediate
concepts. To further simplify the concept selection process,
instead of exhaustively examining all related concepts, we
propose to evaluate them sequentially (i.e., one after the
other). In this approach, starting from the query concepts,
the concepts in closer concept layers (i.e., the ones that
are semantically closer to the query concepts) are evaluated
first. Although the concepts that are semantically closer to
the query concepts are not necessarily more useful concepts,
they are less affected by the noise propagated from the other
concept layers.

Let us define C
r
(i,j) and C

u
(i,j) as the sets of related and

useful concepts, respectively, when examining C(i,j), the j-
th concept at relationship level i. Selection of the concept
C(i,j) for query expansion can be formulated as a binary
hypothesis testing problem with the null hypothesis H0 and
an alternative hypothesis H1 defined as follows:

H0 : C(i,j) ∈ C
r
(i,j) − C

u
(i,j)

v.s. H1 : C(i,j) ∈ C
u
(i,j) (4)

After a concept is selected from C
r
(i,j), it is removed from this

set. Selecting a concept and adding it to the query changes
the usefulness of other concepts; therefore C

u
(i,j) should also

be modified after a concept is selected for query expansion.

3.3.1 Stage I: Initial Sorting of Concepts

The concepts are first sorted according to a linear combi-
nation of computationally inexpensive features:

Q̃s(c) =

ms
∑

j=1

λ̄s,jfj(c) , (5)

where Q̃s(c) is a quality measure of concept c, fj(c) is a fea-
ture function, λ̄s,j is a feature weight, and ms is the number
of inexpensive features.

3.3.2 Stage II: Sequential Selection of Concepts

Let us define C̃u
i as the set of concepts selected in the con-

cept layer i ∈ {1, 2, . . . , k}. It is preferable for the set C̃u
i to

be as close as possible to the set of useful concepts in the
concept layer i (i.e., Cu

i ). In each concept layer starting from
the first (i.e., C(i,1)), the concepts are evaluated sequentially.



After examining the k-th concept layer, the total set of se-
lected concepts is the union the concepts selected in each of
the {1, 2, . . . , k} concept layers:

C̃
ut
k =

k
⋃

i=1

C̃
u
i (6)

An entire set of selected concepts can be obtained by solving
the following optimization problem:

min
C̃ut
k

{ k
∑

i=1

Ni

}

such that E(R̃Λ;T) > θQ , (7)

In the above equation, Ni is the number of concepts evalu-
ated in the i-th concept layer. Ni is less than or equal to the
number of concepts in the i-th concept layer (i.e., Ni ≤ Mi).

E(R̃Λ;T) is a retrieval quality evaluation metric for a set of

document rankings, R̃Λ, based on the training data T. Docu-
ment rankings R̃Λ are those that correspond to the expanded
query, which contains the selected concepts C̃

ut
k . In (7), θQ

is a pre-specified lower threshold for E(R̃Λ;T).
The goal of the above optimization procedure is to address

the problem of dealing with a large number of related con-
cepts that need to be evaluated in each concept layer. This
goal is accomplished by selecting concepts in such a way that
the least number of concepts is evaluated, while maintain-
ing an acceptable value for the target retrieval metric (e.g.

MAP). The set C̃ut
k can be approximated by Algorithm 1. In

this algorithm, Q̃r(C(i,j)) is a measure of retrieval effective-
ness of the candidate concept C(i,j) that can be calculated
using expensive and inexpensive features as a weighted lin-
ear combination of feature functions as follows:

Q̃r(C(i,j)) =

mr
∑

j=1

λ̂r,jfj(C(i,j)) , (8)

where λ̂r,j is the weight of a feature function fj(C(i,j)), and
mr is the number of expensive and inexpensive features.
Q̃r(C(i,j)) is applied to the concepts that are already sorted

using Q̃s(c). Different decisions can be made by comparing

Q̃r(C(i,j)) with the upper and lower thresholds (denoted by
βU and βL). One of the decisions that can be made as a
result of such comparisons is whether to select C(i,j) as an
expansion concept or to discard it. The other decision is
whether to continue examining and evaluating the concepts
in the same concept layer or to switch to the next concept
layer and start examining its concepts. These decisions are
formalized in Table 1.
Computational complexity of this algorithm can be re-

duced further by discarding the concepts that have Qs(c)
below a threshold βs,L in stage I of the algorithm (i.e., those
that have Qs(c) < βs,L). In this case, the number of con-
cepts that are evaluated in the Stage II of the algorithm can
be decreased at the expense of retrieval performance degra-
dation, the degree of which is controlled by the value of βL.

4. EXPERIMENTS
Statistics of the collections used for experimental evalua-

tion of the proposed method are shown in Table 2. Parame-
ters and hyper-parameters of the proposed method and the
baselines were optimized with respect to the Mean Average

Algorithm 1 The proposed two-stage algorithm to obtain
a set of expansion concepts.

1: i = 1
2: C̃

ut
k = {}

3: do
4: C̃

u
i = {}

5: for c ∈ Ci do
6: compute Q̃s(c)
7: end for
8: sort Ci according to Q̃s(c)
9: for j = {1, . . . ,Mi} do

10: compute Q̃r(C(i,j))

11: if Q̃r(C(i,j)) > βU then

12: add C(i,j) to C̃
u
i

13: end if
14: if Q̃r(C(i,j)) < βL then
15: i = i+ 1
16: end if
17: end for
18: C̃

ut
k = C̃

ut
k

⋃

C̃
u
i

19: while C̃
u
i 6= {}

Table 1: Three possible decisions that can made by
evaluating concept c using the proposed method.

Decision Criterion
Select concept C(i,j) &

If Q̃r(C(i,j)) ≥ βUcontinue with the same
concept layer
Discard concept C(i,j) &

If βL ≤ Q̃r(C(i,j)) < βUcontinue with the same
concept layer
Discard concept C(i,j) &

If Q̃r(C(i,j)) < βLmove to the next
concept layer

Table 2: Statistics of experimental collections.
Collection # of documents # of terms

TREC7-8 472, 526 2.16 × 108

ROBUST04 528, 155 2.53 × 108

GOV 1, 247, 753 1.37 × 109

Precision (MAP) on the training set. The concepts in the
first concept layer are obtained by using different methods
depending on how the concept graph was constructed. If
the concept graph is constructed from the collection, this
set of concepts consists of all unigrams in the query. If the
concept graph is obtained from ConceptNet, this set of con-
cepts consist of the longest query n-grams that correspond
to ConceptNet concepts. The concepts in other concept lay-
ers were selected by using the links between the concepts
in the constructed concept graph, and they can be n-gram
concepts with n ≥ 1.

4.1 Baselines
The primary goal of the sequential concept selection method

presented in Section 3.3 is to minimize the number of evalu-
ated candidate expansion concepts from the concept graph.
Considering the trade-off between the precision and the com-
putation time, four variations of the proposed method, which



Table 3: Summary of the proposed method and the baselines

Method
Optimization Problem Criteria in the Approximate Solution

Objective Constraint Selecting Rejecting Stopping

Method A min{
∑k

i=0 Li} E(R̃k
Λ;T) > θ Qb(c) > βQ Qb(c) < βQ i > k

Method B max{E(R̃k
Λ;T)}

∑k

i=0 Li < θ Ii(c) < βI Ii(c) > βI i > k

Method C min{
∑k

i=0 Li} E(R̃k
Λ;T) > θ Qb(c) > βQ Qb(c) < βQ i > k

Method D [12] max{E(R̃k
Λ;T)}

∑k

i=0 Li < θ I(c) < βI I(c) > βI i > k

Proposed min{
∑k

i=0 Ni} E(R̃k
Λ;T) > θ Qr(c) > βU Qr(c) < βL Li = 0
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(d) Method D: Single threshold on I(c) in all layers
[12].

Figure 3: Graphical summary of the baselines A-D. The thresholds placed on the quality of concepts (Qb(c))
or the number of selected concepts (I(c)) in each or all of the concept layers are shown by the red lines.

are summarized in Table 3 and Figure 3, are considered as
baselines in experiments. In Table 3:

Qb(C(i,j)) =

ms
∑

j=1

λ̂b,jfj(C(i,j)) (9)

is a concept quality measure computed as a linear weighted
combination of the feature functions. The set of features
used to calculate the quality measure Qb(c) for the baselines
is the same as the set of features used to calculate Qs(c) in
(5) for our proposed method. In Table 3, I(c) is the index of
a concept in the sorted set of concepts and Li is the number
of selected concepts from the i-th concept layer.
As follows from Table 3, when expansion concept selec-

tion problem is formulated as minimization of the number

of concepts subject to keeping the evaluation metric above a
desired level (i.e., methods A and C), the approximate solu-
tion is to select the concepts if their quality measure Qb(c)
is above a threshold and reject otherwise. But, in the case of
maximization of retrieval precision by putting a constraint
on the number of selected concepts (i.e., methods B and D),
the approximate solution is to select a limited number of
concepts that result in the biggest improvement in AP.

As can be seen from Table 3, methods A and B, similar to
our proposed method, but unlike methods C and D, select
query expansion concepts from different concept layers se-
quentially. In other words, in methods A and B and in our
proposed method, the concepts in concept layer i are exam-
ined, if their ancestor concept nodes in concept layer i − 1
are selected. However, methods C and D first find a set of



Table 4: Features used in stages I and II of the proposed method. All of the listed features are considered
in stage II of the proposed method, but only the features without asterisks are considered in Step I of the
proposed method.

Feature Description

hgstDocScore Retrieval score of the highest ranked document containing C(i,j)

avgDocScore Average retrieval score of all documents containing C(i,j)

varDocScore Variance of retrieval score of all documents containing C(i,j)

avgTDocScore Average retrieval scores of the top documents containing C(i,j)

termFreqTpDoc Number of occurrences of C(i,j) in the top documents
docFreqTpDoc Number of top documents containing C(i,j)

nodeDegree Node degree of C(i,j) in the concept graph
avgNumLinks Average number of paths between C(i,j) and query concepts
maxNumLinks Maximum number of paths between C(i,j) and query concepts
avgCooccur* Average co-occurrence of C(i,j) with query concepts
maxCooccur* Maximum co-occurrence of C(i,j) with query concepts
avgTCooccur Average co-occurrence of C(i,j) with query concepts in top retrieved documents
maxTCooccur Maximum co-occurrence of C(i,j) with query concepts in top retrieved documents
avgTCooccurP* Average co-occurrence of C(i,j) with at least a pair of query concepts in top retrieved documents
maxTCooccurP* Maximum co-occurrence of C(i,j) with at least a pair of query concepts in top retrieved documents
avgTCooccur* Average co-occurrence of C(i,j) with all previously selected concepts in top retrieved documents
maxTCooccur* Maximum co-occurrence of C(i,j) with all previously selected concepts in top retrieved documents
avgCooccurL* Average co-occurrence of C(i,j) with selected concepts in concept layer i − 1
maxCooccurL* Maximum co-occurrence of C(i,j) with selected concepts in concept layer i − 1
avgTCooccurL* Average co-occurrence of C(i,j) with selected concepts in concept layer i − 1 in top retrieved documents
maxTCooccurL* Maximum co-occurrence of C(i,j) with selected concepts in concept layer i − 1 in top retrieved documents
avgTMiP* Average mutual information of C(i,j) with at least a pair of query concepts in top retrieved documents
maxTMiP* Maximum mutual information of C(i,j) with at least a pair of query concepts in top retrieved documents
avgTMiL* Average mutual information of C(i,j) with selected concepts in concept layer i − 1 in top retrieved documents
maxTMiL* Maximum mutual information of C(i,j) with selected concepts in concept layer i − 1 in top retrieved documents
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Figure 4: MAP after removing one feature from the
list of features in Table 4 that results in the highest
decrease of MAP at a time.

all concepts in the layers 1 ≤ i ≤ k and examine all of them
at once. Since these methods do not prune the concepts,
noise can get propagated from layer to layer.
In methods B and D, the threshold (indicated by βI in Ta-

ble 3) is on the number of selected concepts, but, in methods
A and C and the proposed method, the thresholds (shown
by βQ, βL and βU in Table 3) are on the concept quality
measure. Therefore, unlike methods B and D, the thresh-
olds in methods A and C and the proposed method do not
limit the number of expansion concepts, and depending on

the query, the collection and the required level of retrieval
accuracy, the optimal number of expansion concepts is de-
termined by the method. Although methods A and C and
the proposed method do not have a predefined threshold on
the number of expansion concepts, they have a predefined
threshold on concept quality measures (Qb(c) or Qr(c)). In
methods A and B and the proposed method, there are dis-
tinct thresholds for each concept layer, while in methods C
and D, there is only one threshold for all concept layers. As
described in more detail later, βQ and βI as well as βL and
βU are optimized with respect to their objective functions
and constraints by using coordinate ascent.

Our proposed method stops at the concept layer i, if no
concept is identified at this layer (i.e., if Li = 0), but the
methods A-D have predefined limits on the total number of
examined concept layers (i.e., k). In other words, the pro-
posed method stops when there is not enough evidence that
there are useful concepts in other concept layers, while meth-
ods A-D stop when they examine a given number of concept
layers. Therefore, unlike the baselines A-D, the number of
concept layers examined by the proposed method differ from
query to query.

Finally, none of the baselines A-D consider minimizing
the number of evaluated concepts. The constraints used by
methods B and D are on the number of selected concepts,
while the objective functions of methods A and C are mini-
mizing the total number of selected concepts.

The other baselines that are considered in our experimen-
tal evaluation are Query Likelihood retrieval model [24] with
Dirichlet prior smoothing (QL) [31], Relevance Model (RM)
[14], Sequential Dependence Model (SDM) [19] and Latent
Concept Expansion (LCE) [20].

4.2 Features
Two sets of features are used in the proposed two-stage

method. The first set consists of only computationally inex-



pensive features that are used to initially sort the concepts
in the first stage of the proposed method. The second set
consists of mostly computationally expensive features that
are used to select the concepts in the second stage of the
proposed method. Computationally expensive features in-
clude the ones that are based on co-occurrence and mutual
information [18]. Specifically, the first set of features is used
to calculate Qs(C(i,j)) in (5) and the second set is used to
calculate Qr(C(i,j)) in (8).
According to Table 4, the number of inexpensive features

(designated by ms in (5)) is 11, and the total number of ex-
pensive and inexpensive features (designated by mr in (8))
is 25. In this table, 16 features depend on the top retrieved
documents, 6 on the collection and 3 on the concept graph.
The top retrieved documents are obtained only once using
SDM retrieval model with the original query. The number
of top retrieved documents is a hyper-parameter of the pro-
posed method that is estimated via cross-validation.
To determine the relative importance of features, we con-

ducted a study, the results of which for the ROBUST04
collection are reported in Figure 4. In this study, we started
with a full feature set and removed one feature, which results
in the highest reduction of MAP after being removed from
the feature set, at a time. The weights of other features have
been updated to satisfy the conditions of the optimization
problem each time a feature was removed. As follows from
Figure 4, the features that are utilized in both stages of the
proposed method have the highest impact on its retrieval ac-
curacy. It can be also concluded that the features that are
dependent on the collection tend to have a stronger effect
on retrieval performance than other features. Finally, when
all the features are removed, retrieval results are obtained
using only the concepts in the original query, which have a
higher importance weight relative to expansion concepts.
Different combinations of the features listed in Table 4

can be utilized for query expansion, depending on the col-
lection and query set. In particular, from an entire set of
features listed in Table 4 we obtained smaller sets of highly
effective features for each experimental collection via a back-
ward feature elimination process, in which the features that
have negative effect on retrieval accuracy are eliminated one
at a time.

4.3 Parameter optimization
Three-fold cross validation was used to evaluate the per-

formance of the proposed method and the baselines. At each
cross validation fold, the thresholds βU and βL for each con-
cept layer as well as the weights of the features in stages I
and II of the proposed method (i.e., λs,j and λr,j in (5) and
(8)) were optimized in such a way that the MAP of the top
retrieved documents stays above the threshold θ, while the
number of concepts examined in stage II of the proposed
method is minimized. Coordinate ascent [21] was used to
optimize the values of these parameters. Starting from an
initial random point, the parameter space was examined in
uniform steps (step size was 0.01), one parameter at a time.
This process was repeated for all parameters until conver-
gence (if the change in the target retrieval metric from one
iteration to another is less than 0.05) or until the number of
iterations exceeds 100. The values of θ were chosen based on
the MAP of retrieval results of the QL method. The values of
θ for TREC 7-8, ROBUST04 and GOV collections were set
to 0.28, 0.32, and 0.30, respectively, all of which are greater

Table 5: Comparison of retrieval performance of
the proposed method with the baselines in terms
of MAP for different number of examined concept
layers.

C
o
l.

Method
Concept Layer

1st 2nd 3rd 4th

T
R
E
C
7
-8

Method D-HAL 0.2220 0.2239 0.2155 0.2120
Method D-CNet [12] 0.2205 0.2245 0.2214 0.2183

Method C-HAL 0.2152 0.2227 0.2185 0.2133
Method C-CNet 0.2182 0.2265 0.2225 0.2218
Method B-HAL 0.2207 0.2171 0.2266 0.2236
Method B-CNet 0.2188 0.2294 0.2255 0.2294
Method A-HAL 0.2172 0.2251 0.2290 0.2282
Method A-CNet 0.2183 0.2290 0.2329 0.2335
Proposed-HAL 0.2249 0.2348 0.2418 0.2457
Proposed-CNet 0.2222 0.2377 0.2449 0.2484

SDM 0.2124 —— —— ——

R
O
B
U
S
T
0
4

Method D-HAL 0.2660 0.2644 0.2569 0.2554
Method D-CNet [12] 0.2640 0.2651 0.2568 0.2555

Method C-HAL 0.2675 0.2655 0.2608 0.2516
Method C-CNet 0.2637 0.2628 0.2683 0.2695
Method B-HAL 0.2684 0.2718 0.2598 0.2535
Method B-CNet 0.2616 0.2710 0.2665 0.2675
Method A-HAL 0.2614 0.2758 0.2757 0.2764
Method A-CNet 0.2689 0.2732 0.2851 0.2793
Proposed-HAL 0.2721 0.2786 0.2865 0.2898
Proposed-CNet 0.2748 0.2814 0.2889 0.2963

SDM 0.2359 —— —— ——

G
O
V

Method D-HAL 0.2337 0.2428 0.2355 0.2319
Method D-CNet [12] 0.2348 0.2396 0.2355 0.2382

Method C-HAL 0.2404 0.2406 0.2459 0.2322
Method C-CNet 0.2416 0.2451 0.2378 0.2379
Method B-HAL 0.2359 0.2466 0.2418 0.2397
Method B-CNet 0.2420 0.2452 0.2484 0.2421
Method A-HAL 0.2434 0.2442 0.2491 0.2420
Method A-CNet 0.2365 0.2455 0.2524 0.2422
Proposed-HAL 0.2455 0.2429 0.2570 0.2578
Proposed-CNet 0.2449 0.2514 0.2575 0.2591

SDM 0.2184 —— —— ——

than the MAP of the QL method on the same collection by
0.08 (see Table 6).

The same training procedure with the same θ as above was
used to optimize the parameters of the baseline methods,
such as λ̂b,j in (9), λs,j , λr,j and the thresholds βQ, βU and
βL.

Figure 5 illustrates the impact of the upper and lower
thresholds on MAP (i.e., βU and βL) for different collec-
tions at the second concept layer. Because of the depen-
dency between βU and βL in the approximate solution to
the optimization problems, βU and βL are obtained itera-
tively one after the other by holding the other parameter
fixed to a value obtained in the previous iteration. When
the value of the upper threshold is less than the optimum,
more non-useful concepts are added to the candidate list of
expansion concepts. When the value of the upper thresh-
old is greater than the optimum, some useful concepts may
not be selected as expansion concepts. When the value of
the lower threshold is less than the optimum, the proposed
method will evaluate more concepts in total, which is against
its main objective. When the value of the lower threshold
is greater than the optimum, the selection process may ter-
minate earlier and a number of useful concepts may not be
examined at all. In general, although the upper and lower
thresholds are dependent on each other, the upper thresh-
old has the main effect on the accuracy of selected concepts,
while the lower threshold has the main effect on the number
of examined concepts.
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Figure 5: MAP of the proposed method in terms of βU and βL at the 2nd concept layer.

Table 6: Comparison of retrieval performance of the proposed method with the baselines. ∗ and † indicate
statistically significant improvement in terms of MAP and P@20 according to Wilcoxon signed rank test over
SDM/LCE with p < 0.05 and p < 0.1, respectively. Percentage differences in retrieval performance of Method A
relative to SDM/LCE as well as the proposed method relative to SDM/LCE and Method A are shown in parentheses.

Without PRF

Collection
Evaluation

QL SDM
Method A Method A Proposed Proposed

Metric HAL CNet HAL CNet

TREC7-8
MAP 0.1982 0.2124

0.2282∗† 0.2335∗† 0.2457∗† 0.2484∗†
(7.44%) (9.93%) (15.68%/7.67%) (16.95%/6.38%)

P@20 0.3540 0.3765
0.3762 0.3783 0.3785∗ 0.3796∗

(-0.08%) (0.48%) (0.53%/0.61%) (0.82%/0.34%)

ROBUST04
MAP 0.2359 0.2510

0.2764∗† 0.2851∗† 0.2898∗† 0.2963∗†
(10.12%) (13.59%) (15.46%/4.85%) (18.05%/3.93%)

P@20 0.3339 0.3667
0.3679 0.3773∗† 0.3802∗† 0.3795∗†
(0.33%) (2.89%) (3.68%/3.34%) (3.49%/0.58%)

GOV
MAP 0.2184 0.2333

0.2491∗ 0.2524∗† 0.2578∗† 0.2591∗†
(6.77%) (8.19%) (10.5%/3.49%) (11.06%/2.65%)

P@20 0.0389 0.0451
0.0476 0.0493∗ 0.0558∗† 0.0552∗†
(5.54%) (9.31%) (23.73%/17.23%) (22.39%/11.97%)
With PRF

Collection
Evaluation

RM LCE
Method A* Method A* Proposed* Proposed*

Metric HAL CNet HAL CNet

TREC7-8
MAP 0.2151 0.2423

0.2503∗ 0.2558∗† 0.2642∗† 0.2672∗†
(3.3%) (5.57%) (9.04%/5.55%) (10.28%/4.46%)

P@20 0.3641 0.3836
0.3883 0.3927∗ 0.3934∗† 0.4035∗†
(1.23%) (2.37%) (2.55%/1.31%) (5.19%/2.75%)

ROBUST04
MAP 0.2683 0.2826

0.2935∗ 0.2979∗ 0.3034∗† 0.3053∗†
(3.86%) (5.41%) (7.36%/3.37%) (8.03%/2.48%)

P@20 0.3561 0.3785
0.3826∗ 0.3834∗ 0.3893∗† 0.3965∗†
(1.08%) (1.29%) (2.85%/1.75%) (4.76%/3.42%)

GOV
MAP 0.2403 0.2678

0.2693 0.2730∗ 0.2793∗† 0.2811∗†
(0.56%) (1.94%) (4.29%/3.71%) (4.97%/2.97%)

P@20 0.0483 0.0566
0.0583 0.0617∗ 0.0706∗ 0.0720∗†
(3.00%) (9.01%) (24.73%/21.1%) (27.21%/16.69%)

4.4 Comparison of Methods
Table 5 provides comparison of performance of the pro-

posed method with the baselines described in Section 4.1.
As follows from this table, the best performing baseline
is Method A, which is the most similar to the proposed
method, since Method A and the proposed method both
minimize the number of examined concepts. This can po-
tentially reduce the effect of topic drift, which results in
superior performance of these methods.
The outermost concept layer, in which a method is able

to identify the concepts that can increase the precision of
retrieval results in another interesting criterion for compar-
ison of the methods. A method that is able to identify ef-
fective expansion concepts in remote concept layers is more
robust, since these layers include large number of noisy con-
cepts. As follows from Table 5, the average outermost layer
across different collections (rounded to the nearest integer),
in which the baselines A-D and the proposed method were

able to identify effective expansion concepts is 3, 3, 2, 2
and 4, respectively. Therefore, it can be concluded that
the proposed method and the methods that have multiple
thresholds tend to perform better than the methods that
have a single threshold. The other conclusion that can be
made from this table is that the average outermost layer
across different collections (rounded to the nearest integer),
in which the 4 baselines and the proposed method were able
to discover effective concepts, are 2 and 3 for the collection-
and ConceptNet-based concept graphs, respectively. Over-
all, it can be also seen that the methods using ConceptNet-
based concept graph (CNet) obtain higher MAP than the
methods using collection-based concept graphs automati-
cally constructed using HAL (HAL).

In Table 6, the performance of the proposed method is
compared with QL, RM, SDM, LCE and the best performing
methods in Table 5 that use collection- and ConceptNet-
based concept graphs. As opposed to the upper part of



Table 6, all the methods in its lower part also use unigram
concepts from the top retrieved documents for query expan-
sion, in addition to the concepts from the concept graphs
(i.e. a query is first expanded using the methods in the top
part of the table and then using RM). The same collection-
and ConceptNet-based concept graphs were used to obtain
the results in the lower and upper parts of Table 6.
Several conclusions can be made from Table 6. First,

Method A provides significant improvement over QL and
SDM when the concept graph is generated from ConceptNet,
while the proposed method has significant improvements
over the QL and SDM baselines in case of both the collection-
and ConceptNet-based concept graphs. Second, Method A
provides a significant improvement over SDM in the 5 cases,
when it does not incorporate PRF concepts, however it pro-
vides a significant improvement over LCE only in one of the
cases, when it uses PRF concepts. Although the proposed
method provides a smaller improvement over LCE, when it
uses PRF concepts, than over SDM, when it does not use PRF

concepts, the improvements that are achieved in these two
cases are significant. Finally, although the parameters are
estimated with the goal of maximizing MAP, the proposed
method demonstrates significant improvement over the base-
lines (QE and SDM) also in terms of P@20.

5. SUMMARY AND CONCLUSIONS
The main contribution of this work is a two-stage method

for sequential selection of effective concepts for query expan-
sion from the concept graph. The proposed method is for-
mulated as an optimization problem with the goal of evalu-
ating the least possible number of candidate concepts needed
to ensure a given precision of retrieval results. In the first
stage of the proposed method, the candidate concepts are
sorted using a number of computationally inexpensive fea-
tures. This sorting is utilized in the second stage to sequen-
tially select expansion concepts by using computationally
expensive features. Experimental evaluation using TREC
collections indicates that the proposed method outperforms
state-of-the-art baselines, which instead of minimizing the
number of evaluated concepts, aim to minimize the number
of selected concepts or maximize a concept quality measure.
We also found out that the proposed method and the base-
lines produce more accurate results using ConceptNet-based
than collection-based concept graph. We believe that apply-
ing the proposed method to the case of entity-based queries
and knowledge graphs is an interesting future direction for
extending this work.
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